Skip to main content

Use of the Long-Wavelength Range for Remote Sensing of Atmospheric Aerosols

Abstract

The results of laboratory experiments on recording the backscattered IR laser radiation from aerosol particles which contain organic impurities are presented. The studies were performed at the laboratory test bench according to the lidar sensing scheme along a controlled optical path. Water aerosol and water solutions with organic impurities (tryptophan, isopropyl alcohol, glycerin, and nicotinamide adenine dinucleotide (NADH)) were used as model media. A possibility of using IR lasers with frequency scanning for remote sensing of atmospheric organic aerosols is shown.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Florida, USA, 1992).

    Google Scholar 

  2. R. E. Warren, R. G. Vanderbeek, A. Ben-David, and J. L. Ahl, “Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength LIDAR data,” Appl. Opt. 47 (24), 4309–4320 (2008).

    ADS  Article  Google Scholar 

  3. C. Swim, R. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE—Int. Soc. Opt. Eng. 6218, 730408 (2006).

  4. K. P. Gurton, D. Ligon, and R. Dalmani, “Measured infrared optical cross sections for a variety of chemical and biological aerosol stimulants,” Appl. Opt. 43 (23), 4564–4570 (2004).

    ADS  Article  Google Scholar 

  5. J. M. Richardson, J. C. Aldridge, A. B. Milstein, and J. J. Lacirignola, “Aerosol elastic scatter signature in the near and mid-wave IR spectral regions,” Proc. SPIE—Int. Soc. Opt. Eng. 7323, 73230 (2009).

  6. R. E. Warren, R. G. Wanderbeek, and J. L. Ahl, “Detection and classification of atmospheric aerosol using multi-wavelength LWIR LIDAR,” Proc. SPIE—Int. Soc. Opt. Eng. 7304, 73040E-1-7 (2009).

  7. E. Thrush, N. Salciccioli, D. M. Brown, C. Siegrist, A. M. Brown, M. E. Thomas, N. Boggs, and C. C. Carter, “Backscatter signatures of biological aerosols in the infrared,” Appl. Opt. 51 (12), 1836–1842 (2012).

    ADS  Article  Google Scholar 

  8. K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pigkering, and N. Felton, “UK small scale UVLIF LIDAR for standoff BW detection,” Proc. SPIE—Int. Soc. Opt. Eng. 6739, 67390 (2007).

  9. A. N. Gritsuta, A. V. Klimkin, G. P. Kokhanenko, A. N. Kuryak, K. Yu. Osipov, Yu. N. Ponomarev, and G. V. Simonova, “Mobile multi-wavelength aerosol lidar,” Int. J. Remote Sens. 39 (24), 9400–9414 (2018).

    ADS  Article  Google Scholar 

  10. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect,” Atmos. Ocean. Opt. 30 (6), 604–608 (2017).

    Article  Google Scholar 

  11. L. Fiorani, F. Colao, and A. Palucci, “Measurement of Mount Etna plume by CO2-laser-based lidar,” Opt. Lett. 34 (6), 800–802 (2009).

    ADS  Article  Google Scholar 

  12. O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Remote analysis of methane concentration in the atmosphere with an IR lidar system in the 3300–3430 nm spectral range,” Atmos. Ocean. Opt. 33 (2), 188–194 (2020).

    Article  Google Scholar 

  13. Yihua Hu, Xinying Zhao, Youlin Gu, Xi Chen, Xinyu Wang, Peng Wang, Zhiming Zheng, and Xiao Dong, “Significant broadband extinction abilities of bioaerosols,” Sci. China Mater. 62 (7), 1033–1045 (2019).

    Article  Google Scholar 

  14. E. Thrush, N. Salciccioli, D. M. Brown, K. Siegrist, A. M. Brown, M. E. Thomas, N. Boggs, and C. C. Carter, “Backscatter signatures of biological aerosols in the infrared,” Appl. Opt. 51 (12), 1836–1842 (2012).

    ADS  Article  Google Scholar 

  15. A. Klimkin, G. Kokhanenko, A. Kuryak, K. Osipov, V. Sokovikov, and Shuo Zhang, “New stand for fluorescence study,” Proc. SPIE—Int. Soc. Opt. Eng. 10 614, 106 140 (2018).

Download references

Funding

The work was carried out as part of project no. AAAA-A17-117033010037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Klimkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klimkin, A.V., Karapuzikov, A.A., Kokhanenko, G.P. et al. Use of the Long-Wavelength Range for Remote Sensing of Atmospheric Aerosols. Atmos Ocean Opt 33, 383–386 (2020). https://doi.org/10.1134/S1024856020040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020040065

Keywords:

  • laboratory simulation
  • CO2 laser
  • long-wave lidar
  • remote sensing