Skip to main content

Atmospheric Black Carbon and Surface Albedo in the Russian Arctic during Spring

Abstract

We study the statistical relations between the black carbon (BC) content in the atmospheric column and the surface albedo (A), the values of which are available from MERRA-2 reanalysis data for four test areas near the Arctic coast of Russia in April 2010–2016. We also analyze the atmospheric meteorological parameters: air temperature and rainfall and snowfall amounts. The statistical analysis has been carried out using diurnally averaged parameters. An increase in the air temperature is accompanied everywhere by a decrease in the surface albedo, both on a monthly scale and in daily variations. Precipitation in the form of fresh snow increases the surface albedo. On the whole over 7 years, a significant negative correlation between BC and A in April was found in Nenets Autonomous okrug and on the Gydan Peninsula. Separate years (generally diverse for different areas) are revealed when day-to-day variations in A and BC correlate within a month, again with negative coefficients. We estimated possible albedo variations due to changes in different parameters, as well as variations in albedo radiative forcing.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers (Oslo, 2015).

  2. 2

    T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res.: Atmos 118 (11), 5380–5552 (2013).

    ADS  Google Scholar 

  3. 3

    A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky, “Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions,” Atmos. Chem. Phys. 13 (17), 8833–8855 (2013).

    ADS  Article  Google Scholar 

  4. 4

    G. V. Alekseev, “Arctic dimension of global warming,” Led Sneg 54 (2), 53–68 (2014).

    Google Scholar 

  5. 5

    A. P. Makshtas, T. Uttal, T. Laurilla, and N. A. Paramonova, “Hydrometeorological observatory Tiksi (to the five-year anniversary),” Problemy Arktiki Antarktiki. No. 2, 5–12 (2015).

    Google Scholar 

  6. 6

    L. Schmeisser, J. Backman, J. A. Ogren, E. Andrews, E. Asmi, S. Starkweather, T. Uttal, M. Fiebig, S. Sharma, K. Eleftheriadis, S. Vratolis, M. Bergin, P. Tunved, and A. Jefferson, “Seasonality of aerosol optical properties in the Arctic,” Atmos. Chem. Phys. 18 (17), 11599–11622 (2018).

    ADS  Article  Google Scholar 

  7. 7

    C. Tomasi, A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, N. T. O' Neill, R. S. Stone, B. N. Holben, S. Nyeki, C. Wehrli, A. Stohl, M. Mazzola, C. Lanconelli, V. Vitale, K. Stebel, V. Aaltonen, G. de Leeuw, E. Rodriguez, A. B. Herber, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar region,” Earth-Sci. Rev. 140, 108–115 (2015).

    ADS  Article  Google Scholar 

  8. 8

    O. Popovicheva, E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttal, and K. Eleftheriadis, “East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi,” Sci. Total Environ. 655, 924–938 (2019).

    ADS  Article  Google Scholar 

  9. 9

    W.-L. Lee, K. N. Liou, C. He, H.-C. Liang, T.‑C. Wang, Q. Li, Z. Liu, and Q. Yue, “Impact of absorbing aerosol deposition on snow albedo reduction over the Southern Tibetan Plateau based on satellite observations,” Theor. Appl. Climatol. 129 (3-4), 1373–1382 (2017).

    ADS  Article  Google Scholar 

  10. 10

    P. K. Quinn, T. S. Bates, E. Baum, N. Doubleday, A. M. Fiore, M. Flanner, A. Fridlind, T. J. Garrett, and D. Koch, “Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies,” Atmo-s. Chem. Phys. 8, 1723–1735 (2008).

    ADS  Article  Google Scholar 

  11. 11

    A. A. Vinogradova and A. V. Vasileva, “Black Carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).

    Article  Google Scholar 

  12. 12

    V. V. Vinogradova, A. N. Zolotokrylin, and A. N. Krenke, “Climatic zoning of the Russian Federation territory,” Izv. RAN. Ser. Geograficheskaya. No. 5, 106–117 (2008).

  13. 13

    Access NASA Earth Science Data. https://giovanni. gsfc.nasa.gov/giovanni/. Cited October 27, 2019.

  14. 14

    Global Modeling and Assimilation Office (GMAO) (2015), MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://disc.gsfc.nasa.gov/datasets/ M2T1NXAER_5.12.4/summary. Cited August 27, 2019.

  15. 15

    MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0. https://modis.gsfc. nasa.gov/data/atbd/atbd_mod12.pdf. Cited August 27, 2019.

  16. 16

    A. A. Vinogradova, T. B. Titkova, A. V. Vasil’eva, and Yu. A. Ivanova, Impact of Russian summer wild fires on the black carbon atmospheric content. http://www.rrc. phys.spbu.ru/msard19/thesis.pdf. Cited August 16, 2019.

  17. 17

    R. Harding, M. Best, E. Blyth, S. Hagemann, P. Kabat, L. M. Tallaksen, T. Warnaars, D. Wiberg, G. P. Weedon, H. A. J. Lanen, F. Ludwig, and I. Haddeland, “WATCH: Current knowledge of the terrestrial global water cycle,” J. Hydrometeorol. 12 (6), 1149–1156 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Water and Global Change. http://www.eu-watch.org/. Cited August 27, 2019.

  19. 19

    T. B. Titkova and V. V. Vinogradova, “Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data),” Led Sneg. No. 1, 25–33 (2017).

    Google Scholar 

  20. 20

    G. A. Panovskij and G. V. Brajer, Statistical Methods in Meteorology (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  21. 21

    The Second Roshydromet Estimation Report about Climate Change and Its Consequences on the Russian Territory (Roshydromet, Moscow, 2014) [in Russian].

  22. 22

    A. A. Vinogradova and T. B. Titkova, “Air temperature and black carbon concentration in the surface atmosphere near Tiksi, Yakutiya,” Geofiz. Protsessy Biosfera 18 (4), 7–13 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Russian Fund for Basic Research (through grants nos. 18-05-60 183 and 18-05-60 216).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. A. Vinogradova or T. B. Titkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, A.A., Titkova, T.B. Atmospheric Black Carbon and Surface Albedo in the Russian Arctic during Spring. Atmos Ocean Opt 33, 260–266 (2020). https://doi.org/10.1134/S1024856020030136

Download citation

Keywords:

  • the Arctic
  • climate
  • atmosphere
  • black carbon
  • surface albedo
  • meteorological parameters
  • multiple linear regression