Abstract
Variations in the sunlight duration (SLD) in Tomsk are analyzed for the period from 1961 to 2018 and separately for 1961–1990 and 1981–2010. Data on clouds and total solar radiation obtained at the TOR-station of IAO SB RAS in 1996–2018 are used. The actual long-term monthly mean SLD ranges from 44 h in December to 317 h in June–July. The analysis of the long-term variation in SLD shows its increase from 1961 to 1989 and its decrease starting from 1999 due to an increase in the low cloud cover and high frequency of continuous clouds. The SLD in Tomsk in the modern period has increased relative to the historical period. Regression equations between SLD and the total solar radiation (Q) are derived.
This is a preview of subscription content, access via your institution.


REFERENCES
J. Lean, “The Sun’s variable radiation and its relevance for Earth,” Ann. Rev. Astrophys. 35 (1), 33–67 (1997).
J.-L. Le Moue, E. Blanter, M. Shnirman, and V. Courtillot, “Evidence for solar forcing in variability of temperatures and pressures in Europe,” J. Atmos. Sol.-Terr. Phys. 71 (12), 1309–1321 (2009).
O. Coddington, J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, “A solar irradiance climate data record,” Bull. Am. Math. Soc. 97 (7), 1265–1282 (2016).
S. Kato, “Interannual variability of the global radiation budget,” J. Clim. 22 (18), 4893–4907 (2009).
K. Kodera, R. Thieblemont, S. Yukimoto, and K. Matthes, “How can we understand the global distribution of the solar cycle signal on the Earth’s surface?,” Atm-os. Chem. Phys. 16 (20), 12925–12944 (2016).
W. Soon and D. R. Legates, “Solar irradiance modulation of equator-to-pole (Arctic) temperature gradients: Empirical evidence for climate variation on multi-decadal timescales,” J. Atmos. Sol.-Terr. Phys. 93, 45–56 (2013).
K. Bakirci, “Prediction of global solar radiation and comparison with satellite data,” J. Atmos. Sol.-Terr. Phys. 152, 41–49 (2017).
E. I. Khlebnikova and I. A. Sal’, “Regional climate changes in the main components of the radiation budget of the Earth’s surface on the Russian territory,” Trudy GGO. No. 570, 34–49 (2014).
E. L. Makhotkina and I. N. Plakhina, “Air transparency monitoring: Measurement results for last decades,” Trudy GGO. No. 572, 57–88 (2014).
Yu. M. Timofeev and E. M. Shul’gina, “Russian investigations in the field of atmospheric radiation in 2011–2014,” Izv. Atmos. Ocean. Phys. 52 (5), 467–482 (2016).
V. de Bock, H. de Backer, R. van Malderen, A. Mangold, and A. Delcloo, “Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium,” Atmos. Chem. Phys. 14 (22), 12251–12270 (2014).
K. Cizkova, K. Laska, L. Metelka, and M. Stanek, “Reconstruction and analysis of erythemal UV radiation time series from Hradec Kralove (Czech Republic) over the past 50 years,” Atmos. Chem. Phys. 18 (3), 1805–1818 (2018).
B. Pittock, “Can solar variations explain variations in the Earth’s climate?,” Clim. Change 96 (4), 483–487 (2009).
V. A. Golovko, “Energy aspects of Earth’s climate measurements: A view from space,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 140–154 (2012).
Survey of Possibilities, Ed. by B.V. Lukutin (NTL, Tomsk, 2002) [in Russian].
S. I. Sivkov, Techniques for Calculation of Solar Radiation Characteristics (Gidrometeoizdat, Leningrad, 1968) [in Russian]
D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the tropospheric ozone research station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).
T. K. Sklyadneva, T. M. Rasskazchikova, V. G. Arshinova, and M. Yu. Arshinov, “Changes in radiation and meteorological parameters of the atmosphere from observation data in Tomsk,” Opt. Atmos. Okeana 31 (4), 288–293 (2018).
X. Xia, “Significant decreasing cloud cover during 1954–2005 due to more clear-sky days and less overcast days in china and its relation to aerosol,” Ann. Geophys. 30 (3), 573–582 (2012).
D. Mateos, A. di Sarra, D. Meloni, C. di Biagio, and D. M. Sferlazzo, “Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects,” J. Atmos. Sol.-Terr. Phys. 73 (13), 1739–1746 (2011).
M. E.-N. Adam and E. A. Ahmed, “Comparative analysis of cloud effects on ultraviolet-B and broadband solar radiation: Dependence on cloud amount and solar zenith angle,” Atmos. Res 168, 149–157 (2016).
M. Kulmala, T. Suni, K. E. J. Lehtinen, MasoM. Dal, M. Boy, A. Reissell, U. Rannik, P. Aalto, P. Keronen, H. Hakola, J. Back, T. Hoffmann, T. Vesala, and P. Hari, “A new feedback mechanism linking forests, aerosols, and climate,” Atmos. Chem. Phys. 4 (2), 557–562 (2004).
M. Kulmala, T. Nieminen, R. Chellapermal, R. Makkonen, J. Back, and V.-M. Kerminen, “Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems,” in Biology, Controls and Model Tree Volatile Organic Compound Emissions, Ed. by U. Niinemets and R.K. Monson (Springer, Dordrecht, 2010).
M. Kulmala, T. Nieminen, A. Nikandrova, K. Lehtipalo, H. E. Manninen, M. K. Kajos, P. Kolari, A. Lauri, T. Petaja, R. Krejci, H.-C. Hansson, E. Swietlicki, A. Lindroth, T. R. Christensen, A. Arneth, P. Hari, J. Back, T. Vesala, and V.-M. Kerminen, “CO2-induced terrestrial feedback mechanism: From carbon sink to aerosol source and back,” Boreal Environ. Res. 19 (2014).
E. Ezhova, I. Ylivinkka, J. Kuusk, K. Komsaare, M. Vana, A. Krasnova, S. Noe, M. Arshinov, B. Belan, S. Park, J. Lavric, M. Heimann, P. Kolari, T. Petaja, P. Hari, T. Vesala, J. Back, U. Rannik, V.-M. Kerminen, and M. Kulmala, “Direct effect of aerosols on solar radiation and gross primary production in boreal forest,” Atmos. Chem. Phys. 18 (24), 17 863–17 881 (2018).
The Second Roshydromet Estimation Report about Climate Change and Its Consequences on the Russian Territory. Vol. 1 (Roshydromet, Moscow, 2014) [in Russian].
E. I. Khlebnikova, E. L. Mahotkina, and I. A. Sall’, “Clouds and Radiation Conditions on the Russian territory: Climate changes observed,” Trudy GGO. No. 573, 65–91 (2014).
E. V. Gorbarenko, ”Climate changes in atmospheric radiation parameters from the MSU meteorological observatory data,” Rus. Meteorol. Hydrol. 41 (11–12), 789–797 (2016).
E. V. Gorbarenko, ”Sunshine variability in Moscow in 1955–2017,” Rus. Meteorol. Hydrol. 44 (6), 384–393 (2019).
Funding
The study was carried out under the financial support of the Russian Science Foundation (grant no. 17-17-01095) with the use of IAO SB RAS infrastructure created and operated under State Assignment no. AAAA-A17-117021310142-5, including the “Atmosfera” Common Use Center.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Sklyadneva, T.K., Belan, B.D. Variability of Sunlight Duration in Tomsk in 1961–2018. Atmos Ocean Opt 33, 254–259 (2020). https://doi.org/10.1134/S1024856020030112
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856020030112