Skip to main content

Analysis of Brown Carbon Content and Evolution in Smokes from Siberian Forest Fires Using AERONET Measurements

Abstract

The content and evolution of brown carbon (BrC) in smokes from Siberian forest fires were analyzed using measurements of the aerosol absorption optical depth (AAOD) at three Russian AERONET stations located in Tomsk, Zvenigorod, and Yekaterinburg. Estimates are obtained of the relative contribution of BrC in fine aerosol particles to the absorption of solar radiation at a wavelength of 440 nm (ηBrC) and, in particular, for an anomalous episode of long-range transport of smokes from Siberia to the European part of Russia in summer 2016. A considerable BrC content is found in smokes in Tomsk and Zvenigorod (where ηBrC is estimated to be 15 and 18% on average). It is noteworthy that no significant ηBrC values were revealed during passage of smokes from Siberian fires over Yekaterinburg. The ηBrC values were found to decrease with aerosol aging under sunlit conditions on the characteristic timescale of about 30 h. At the same time, the measurements in Zvenigorod indicate that the absorption properties of the organic component of smoke aerosol increase during a much longer evolution.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. R. Van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, and P. S. Kasibhatla, “Global fire emissions estimates during 1997-2016,” Earth Syst. Sci. Data 9 (2), 697–720 (2017).

    Article  ADS  Google Scholar 

  2. V. G. Bondur, K. A. Gordo, and V. L. Kladov, “Spatiotemporal distribution of the wild fire areas and emissions of carbon gases and aerosols over the Northern Eurasia according to satellite monitoring data,” Issledovanie Zemli iz Kosmosa, No. 6, 3–20 (2016).

  3. M. Sand, T. Berntsen, K. von Salzen, M. Flanner, J. Langner, and D. Victor, “Response of Arctic temperature to changes in emissions of short-lived climate forcers,” Nat. Clim. Change, No. 6, 286–289 (2015).

    Article  Google Scholar 

  4. T. C. Bond, S. J. Doherty, D. W. Fahey, et al., “Bounding the role of Black Carbon in the climate system: A scientific assessment,” J. Geophys. Res.: Atmos 118 (11), 5380– 5552 (2013).

    ADS  Google Scholar 

  5. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicrometer aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    Article  ADS  Google Scholar 

  6. N. Chubarova, Ye. Nezval’, I. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010,” Atmos. Meas. Tech 5 (3), 557–568 (2012).

    Article  Google Scholar 

  7. V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M.  V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  8. T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” At-mos. Meas. Tech 10 (1), 179–198 (2017).

    Article  Google Scholar 

  9. V. S. Kozlov, E. P. Yausheva, M. V. Panchenko, and V. P. Shmargunov, “Annual behavior of Angstrom exponent of the aerosol absorption coefficients in the visible wavelength range upon the results of measurements at the Aerosol Station of IAO SB RAS,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (2018).

  10. P. N. Antokhin, V. G. Arshinova, M. Y. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Fofonov, A. V. Kozlov, J. -D. Paris, P. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, and G. N. Tolmachev, “Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012,” J. Geophys. Res.: Atmos 123, 2285–2297 (2018).

    ADS  Google Scholar 

  11. I. B. Konovalov, D. A. Lvova, M. Beekmann, H. Jethva, E. F. Mikhailov, J.-D. Paris, B. D. Belan, V. S. Kozlov, P. Ciais, and M. O. Andreae, “Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths,” Atmos. Chem. Phys. 18 (20), 14 889–14 924 (2018).

    Article  Google Scholar 

  12. I. B. Konovalov, M. Beekmann, E. V. Berezin, P. Formenti, and M. O. Andreae, “Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide,” Atmos. Chem. Phys. 17 (7), 4513–4537 (2017).

    Article  ADS  Google Scholar 

  13. K. Tsigaridis and M. Kanakidou, “The present and future of secondary organic aerosol direct forcing on climate,” Cur. Clim. Change Rep. 4 (2), 84–98 (2018).

    Article  Google Scholar 

  14. I. B. Konovalov, M. Beekmann, N. A. Golovushkin, and M. O. Andreae, “Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis,” Atmos. Chem. Phys. 19 (19), 2091–12119 (2019).

    Article  Google Scholar 

  15. M. O. Andreae and A. Gelencser, “Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols,” Atmos. Chem. Phys. 6 (10), 3131–3148 (2006).

    Article  ADS  Google Scholar 

  16. A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic,” Atm-os. Oceanic Opt. 29 (6), 545–550 (2016).

    Article  Google Scholar 

  17. H. Brown, X. Liu, Y. Feng, Y. Jiang, M. Wu, Z. Lu, C. Wu, S. Murphy, and R. Pokhrel, “Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5),” Atmos. Chem. Phys. 18 (24), 7745–17768 (2018).

    Article  Google Scholar 

  18. R. Saleh, M. Marks, J. Heo, P. J. Adams, N. M. Donahue, and A. L. Robinson, “Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions,” J. Geophys. Res.: Atmos. 120 (19), 10285–10296 (2015).

    ADS  Google Scholar 

  19. X. Wang, C. L. Heald, J. Liu, R. J. Weber, P. Campuzano-Jost, J. L. Jimenez, J. P. Schwarz, and A. E. Perring, “Exploring the observational constraints on the simulation of brown carbon,” Atmos. Chem. Phys. 18 (2), 635–653 (2018).n

    Article  ADS  Google Scholar 

  20. R. P. Pokhrel, E. R. Beamesderfer, N. L. Wagner, J. M. Langridge, D. A. Lack, T. Jayarathne, E. A. Stone, C. E. Stockwell, R. J. Yokelson, and S. M. Murphy, “Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions,” Atmos. Chem. Phys. 17 (8), 5063–5078 (2017).

    Article  ADS  Google Scholar 

  21. G. I. Gorchakov, A. V. Karpov, N. V. Pankratova, E. G. Semutnikova, A. V. Vasil’ev, and I. A. Gorchakova, “Brown carbon and black carbon in smoke-filled atmosphere during boreal forest fires,” Issledovanie Zemli Kosmosa. No. 3, 11–21 (2017).

    Google Scholar 

  22. H. Forrister, J. Liu, E. Scheuer, J. Dibb, L. Ziemba, K. L. Thornhill, B. Anderson, G. Diskin, A. E. Perring, J. P. Schwarz, P. Campuzano-Jost, D. A. Day, B. B. Palm, J. L. Jimenez, A. Nenes, and R. J. Weber, “Evolution of brown carbon in wildfire plumes,” Geophys. Rev. Lett. 42 (11), 4623–4630 (2015).

    Article  ADS  Google Scholar 

  23. M. Zhong and M. Jang, “Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight,” Atmos. Chem. Phys. 14 (3), 1517–1525 (2014).

    Article  ADS  Google Scholar 

  24. J. P. S. Wong, A. Nenes, and R. J. Weber, “Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging,” Environ. Sci. Technol. 51 (15), 8414–8421 (2017).

    Article  ADS  Google Scholar 

  25. X. Fan, X. Yu, Y. Wang, X. Xiao, F. Li, Y. Xie, S. Wei, J. Song, and P. Peng, “The aging behaviors of chromophoric biomass burning brown carbon during dark aqueous hydroxyl radical oxidation processes in laboratory studies,” Atmos. Environ. 205, 9–18 (2019).

    Article  ADS  Google Scholar 

  26. R. Bahadur, P. S. Praveen, Y. Xu, and V. Ramanathan, “Solar absorption by elemental and brown carbon determined from spectral observations,” Proc. Nat.: Acad. Sci. USA 109 (43), 17 366–17 371 (2012).

    Article  Google Scholar 

  27. G. I. Gorchakov, A. V. Vasil’ev, K. S. Verichev, E. G. Semutnikova, and A. V. Karpov, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).

    Article  ADS  Google Scholar 

  28. X. Wang, C. L. Heald, A. J. Sedlacek, S. S. de Sa, S. T. Martin, M. L. Alexander, T. B. Watson, A. C. Aiken, S. R. Springston, and P. Artaxo, “Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and aethalometer observations,” Atmos. Chem. Phys. 16 (19), 12733–12752 (2016).

    Article  ADS  Google Scholar 

  29. S. A. Sitnov, I. I. Mokhov, and G. I. Gorchakov, “Connection of smoke in air in the European Russia in summer 2016 with Siberian forest fires and abnormal atmospheric circulation,” Dokl. Akad. Nauk 472 (4), 456–461 (2017).

    Google Scholar 

  30. E. G. Semutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Ocean. Opt. 31 (2), 171–180 (2018).

    Article  Google Scholar 

  31. S. Mailler, L. Menut, D. Khvorostyanov, M. Valari, F. Couvidat, G. Siour, S. Turquety, R. Briant, P. Tuccella, B. Bessagnet, A. Colette, L. Letinois, K. Markakis, and F. Mereux, “CHIMERE-2017: From urban to hemispheric chemistry transport modeling,” Geosci. Model. Dev. 10 (6), 2397–2423 (2017).

    Article  ADS  Google Scholar 

  32. I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaiser, and E.-D. Schulze, “Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: A method and its application to wildfires in Siberia,” Atmos. Chem. Phys. 14 (19), 10383–10410 (2014).

    Article  ADS  Google Scholar 

  33. I. B. Konovalov, D. A. Lvova, and M. Beekmann, “Estimation of the elemental to organic carbon ratio in biomass burning aerosol using AERONET retrievals,” Atmosphere 8 (7), 122 (2017).

    Article  ADS  Google Scholar 

  34. C. Wu, D. Wu, and J. Z. Yu, “Quantifying black carbon light absorption enhancement with a novel statistical approach,” Atmos. Chem. Phys. 18 (1), 289–309 (2018).

    Article  ADS  Google Scholar 

  35. K. C. Barsanti and J. F. Pankow, “Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: Aldehydes and ketones,” Atmos. Environ. 8 (26), 4371–4382 (2004).

    Article  ADS  Google Scholar 

  36. E. Yousif and R. Haddad, “Photodegradation and photostabilization of polymers, especially polystyrene: Review,” Springerplus 2, 398 (2013).

    Article  Google Scholar 

  37. H. Tang and J. E. Thompson, “Light-absorbing products form during the aqueous phase reaction of phenolic compounds in the presence of nitrate and nitrite with UV illumination,” Open J. Air Pollut. 1 (2), 13–21 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Russian Science Foundation (grant no. 19-77-20109). Model calculations for period of 2012 were performed under the support of the Russian Foundation for Basic Research (grant no. 18-05-00911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Golovushkin, I. N. Kuznetsova, I. B. Konovalov, M. I. Nahaev, V. S. Kozlov or M. Beekmann.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovushkin, N.A., Kuznetsova, I.N., Konovalov, I.B. et al. Analysis of Brown Carbon Content and Evolution in Smokes from Siberian Forest Fires Using AERONET Measurements. Atmos Ocean Opt 33, 267–273 (2020). https://doi.org/10.1134/S1024856020030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020030045

Keywords: