Skip to main content
Log in

Dimer Absorption within Water Vapor Bands in the IR Region

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Contributions of the absorption by water dimers to the continuum absorption by water vapor within the IR region are analyzed. They are defined as the difference between experimental data and asymptotic line wing theory (ALWT) calculations. In the ALWT calculations, the line profiles are used with parameters fitted to the Burch experimental data and to the FTIR measurements in the IR water vapor windows. Calculations with the line profile which describes the Burch data in the 2000–3000 cm−1 range are in a good agreement with CRDS measurements between other IR water vapor bands. Both profiles provide close absorption values within the water vapor bands presumably due to the contribution of stable dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. E. Burch, Absorption by H2O in Narrow Windows between 3000–4200 cm–1, Report No. AFGL-TR-85-0036 (Air Force Geophysics Laboratory, Hanscom AFB, 1985).

  2. I. V. Ptashnik, “Water dimers: An "unknown” experiment,” Atmos. Ocean. Opt. 18 (4), 324–326 (2005).

    Google Scholar 

  3. D. P. Schofield and H. G. Kjaergaard, “Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer,” Phys. Chem. Chem. Phys. 5, 3100–3105 (2003).

    Article  Google Scholar 

  4. I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: Evidence for water dimers,” Q. J. R. Meteorol. Soc. 130, 2391–2408 (2004).

    Article  ADS  Google Scholar 

  5. I. V. Ptashnik, “Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,” J. Quant. Spectrosc. Radiation. Transfer 109, 831–852 (2008).

    Article  ADS  Google Scholar 

  6. D. E. Stogryn and J. O. Hirshfelder, “Contribution of bound, metastable and free molecules to the second virial coefficients and some properties of double molecules,” J. Chem. Phys. 31, 1531–1345 (1959).

    Article  ADS  Google Scholar 

  7. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  8. I. V. Ptashnik, T. E. Klimeshina, A. A. Solodov, and A.  A. Vigasin, “Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands,” J. Quant. Spectrosc. Radiat. Transfer 228, 97–105 (2019).

    Article  ADS  Google Scholar 

  9. E. A. Serov, T. A. Odintsova, M. Yu. Tretyakov, and V. E. Semenov, “On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 193, 1–12 (2017).

    Article  ADS  Google Scholar 

  10. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  11. Yu. V. Bogdanova and O. B. Rodimova, “Ratio between monomer and dimer absorption in water vapor within the H2O rotational band,” Atmos. Ocean. Opt. 31 (5), 457–465 (2018).

    Article  Google Scholar 

  12. T. A. Odintsova, M. Yu. Tretyakov, O. Pirali, and P. Roy, “Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis,” J. Quant. Spectrosc. Radiat. Transfer 187, 116–123 (2017).

    Article  ADS  Google Scholar 

  13. Yu. V. Bogdanova and O. B. Rodimova, “Contributions of the dimmer and monomer absorption in IR water vapor spectra,” in Proc. of XXIV International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018), p. A19–A22 [in Russina].

  14. D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. M. McPheat, and R. G. Williams, “Laboratory measurements of the water vapor continuum in the 1200–8000 cm–1 region between 293 and 351 K,” J. Geophys. Res. 114 (D21301), 23 (2009).

    Article  Google Scholar 

  15. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments,” J. Geophys. Res. 116 (D16305), 16 (2011).

    Article  Google Scholar 

  16. W. J. Lafferty, “The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 1304–1313 (2011).

    Article  ADS  Google Scholar 

  17. D. Burch and R. Alt, Continuum Absorption by H2O in the 700–1200 and 2400–2800 cm–1Windows, Report No. AFGL-TR-84-0128 (Air Force Geophysics Laboratory, Hanscom AFB, 1984).

  18. L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini, and A. Campargue, “The water vapor self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 μm,” Atmos. Meas. Tech.11, 2159–2171 (2018).

    Article  Google Scholar 

  19. T. E. Klimeshina, Yu. V. Bogdanova, and O. B. Rodimova, “Continuum absorption by water vapor in the 8–12 and 3–5 μm atmospheric transparency windows,” Atmos. Ocean. Opt. 25 (1), 71–76 (2012).

    Article  Google Scholar 

  20. E. P. Gordov and S. D. Tvorogov, QuantumTheorySemi-ClassicalRepresentation (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  21. D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, Report No. AFCRL-71-0124 (Air Force Geophysics Laboratory, Hanscom AFB, 1971).

  22. D. E. Burch, “Continuum absorption by atmospheric H2O,” Proc. SPIE—Int. Soc. Opt. Eng. 277, 28–39 (1981).

  23. J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, “The infrared continuum of pure water vapor: Calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993).

    Article  ADS  Google Scholar 

  24. Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128, 124313–1 (2008).

    Article  ADS  Google Scholar 

  25. T. E. Klimeshina and O. B. Rodimova, “Calculation of H2O continuum absorption in IR-region based on Burch’s measurements,” Opt. Atmos. Okeana 32 (8), 628–632 (2019).

    Article  Google Scholar 

  26. H. G. Kjaergaard, A. L. Garden, G. M. Chaban, R. B. Gerber, D. A. Matthews, and J. F. Stanton, “Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches,” J. Phys. Chem. A 112, 4324–4335 (2008).

    Article  Google Scholar 

  27. I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    Article  ADS  Google Scholar 

  28. A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, and D. Romanini, “Accurate laboratory determination of the near-infrared water vapor self-continuum: A test of the MT_CKD model,” J. Geophys. Res.: Atmos 121, 13180–13203 (2016).

    ADS  Google Scholar 

  29. L. Richard, S. Vasilchenko, D. Mondelain, I. Ventrillard, D. Romanini, and A. Campargue, “Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows,” J. Quant. Spectrosc. Radiat. Transfer 201, 171–179 (2017).

    Article  ADS  Google Scholar 

  30. D. Mondelain, A. Aradj, S. Kassi, and A. Campargue, “The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 130, 381–391 (2013).

    Article  ADS  Google Scholar 

  31. K. Kuyanov-Prozument, M. Y. Choi, and A. F. Vilesov, “Spectrum and infrared intensities of OH-stretching bands of water dimmers,” J. Chem. Phys. 132, 014304 (2010).

    Article  ADS  Google Scholar 

  32. A. A. Simonova and I. V. Ptashnik, “Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).

  33. S. D. Tvorogov, “Problem of centers of mass within the problem of the contour of spectral lines. 1. Existence of long trajectories,” Atmos. Ocean. Opt. 22 (3), 257–263 (2009).

    Article  Google Scholar 

  34. Yu. V. Bogdanova and O. B. Rodimova, “Role of diffusion in the violation of the long-wave approximation in line wings,” Intern. J. Quant. Chem. 112 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. E. Klimeshina or O. B. Rodimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, Y.V., Klimeshina, T.E. & Rodimova, O.B. Dimer Absorption within Water Vapor Bands in the IR Region. Atmos Ocean Opt 33, 134–140 (2020). https://doi.org/10.1134/S1024856020020013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020020013

Keywords:

Navigation