Skip to main content

Integrated Studies of Tropospheric Aerosol at the Institute of Atmospheric Optics (Development Stages)

Abstract

In the work dedicated to the 50th anniversary of the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (IAO SB RAS), experimental studies are reviewed in a certain chronology that have been milestones in the development of an integrated study of aerosol life in the atmosphere. We discuss briefly the main results from the series of expedition studies of the optical and microphysical properties of aerosol of marine coastal hazes, arid zones, and different geographic regions of the World Ocean. The modern set of methods and instrumentation that we use to measure the aerosol characteristics in the monitoring mode at the network of IAO SB RAS stations is described. The results of multiyear studies of tropospheric aerosol using aircraft laboratories are presented.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    V. E. Zuev, Transparency of the Atmosphere for Visible and IR Rays (Sov. radio, Moscow, 1966) [in Russian].

  2. 2

    E. V. Pyaskovskaya-Fesenkova, Light Scattering in the Earth’s Atmosphere (AS USSR, Moscow, 1957) [in Russian].

    Google Scholar 

  3. 3

    O. D. Barteneva, “Light scattering function in the surface air layer,” Izv. Akad Nauk SSSR. Geofiz., No. 12, 852–860 (1960).

  4. 4

    G. V. Rozenberg, “Properties of atmospheric aerosol according to optical sounding data,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 3 (9), 936–949 (1967).

    Google Scholar 

  5. 5

    G. V. Rozenberg, “Optical investigation of atmospheric aerosol,” Sov. Phys. Usp. 11 (3), 353–380 (1968).

    Article  ADS  Google Scholar 

  6. 6

    P. Toropova, “Certain properties of atmospheric aerosol,” Tr. AFI AN Kaz. SSR. 13, 55–62 (1969).

    Google Scholar 

  7. 7

    K. Ya. Kondrat’ev, I. Ya. Badinov, L. S. Ivlev, and G. A. Nikol’skii, “Aerosol structure of the troposphere and stratosphere,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 5 (5), 480–493 (1969).

    Google Scholar 

  8. 8

    Yu. S. Georgievskii and G. V. Rozenberg, “Moisture as a factor of aerosol variability,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 9 (2), 126–138 (1973).

    Google Scholar 

  9. 9

    G. V. Rozenberg, “The nature of aerosol absorption in the whort-wave spectral region,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 15 (12), 1280–1292 (1978).

    Google Scholar 

  10. 10

    G. I. Gorchakov and M. A. Sviridenkov, “Statistical model of optical parameters of atmospheric aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 15 (1), 53–60 (1979).

    Google Scholar 

  11. 11

    Yu. S. Lyubovtseva, H. I. Yudin, and H. V. Mel’nikov, “Study of characteristics and transformation processes of natural aerosol,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 17 (7), 716–724 (1981).

    Google Scholar 

  12. 12

    L. S. Ivlev, Chemical Composition and Structure of Atmospheric Aerosols (Leningrad State University, Leningrad, 1982) [in Russian].

    Google Scholar 

  13. 13

    V. E. Zuev and I. E. Naats, Inverse Problems of Laser Sounding of the Atmosphere (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  14. 14

    G. V. Rozenberg, “Origination and development of atmospheric aerosol—kinetically conditioned parameters,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 19 (1), 21–35 (1983).

    Google Scholar 

  15. 15

    K. Ya. Kondrat’ev and D. V. Pozdnyakov, Aerosol Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  16. 16

    M. V. Kabanov and M. V. Panchenko, Scattering of Optical Waves in Disperse Media. Part III. Atmospheric Aerosol (Publishing House of TB SB AS USSR, Tomsk, 1984) [in Russian].

    Google Scholar 

  17. 17

    G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (Publishing House of TB SB AS USSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  18. 18

    L. S. Ivlev and S. D. Andreev, Optical Properties of Atmospheric Aerosols (Leningrad State University, Leningrad, 1986) [in Russian].

    Google Scholar 

  19. 19

    http://www.ipcc.ch/publications and data/publications and data reports.shtml. Cited March 2, 2019.

  20. 20

    Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Wind speed effect on the aerosol attenuation of optical radiation in the atmosphere of sea water areas,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 23 (3), 324–327 (1987).

    Google Scholar 

  21. 21

    Yu. A. Pkhalagov and V. N. Uzhegov, “Statistical characteristics of aerosol attenuation of optical radiation in coastal hazes,” Opt. Atmos. Okeana 1 (6), 16–22 (1988).

    Google Scholar 

  22. 22

    M. V. Panchenko, M. V. Kabanov, and V. Ya. Fadeev, “Statistical model of directed light scattering coefficients of coastal haze,” J. Opt. Soc. Am. 2 (10), 1735–1738 (1985).

    Article  ADS  Google Scholar 

  23. 23

    M. V. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Veretnnikov, V. N. Uzhegov, and V. Ya. Fadeev, Optical Properties of Coastal Aerosol Hazes (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  24. 24

    Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Aerosol extinction of optical radiation in the atmosphere of arid zone,” Atmos. Ocean. Opt. 7 (10), 714–720 (1994).

    Google Scholar 

  25. 25

    N. N. Shchelkanov and Yu. A. Pkhalagov, “Two-parameter model of aerosol attenuation for atmospheric hazes,” Atmos. Ocean. Opt. 12 (12), 1039–1040 (1999).

    Google Scholar 

  26. 26

    M. V. Panchenko, V. V. Pol’kin, Yu. A. Pkhalagov, and N. N. Shchelkanov, “Statistical relations between the optical and microphysical characteristics of aerosol in arid zone,” Atmos. Ocean. Opt. 6 (8), 522–525 (1993).

    Google Scholar 

  27. 27

    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29 (9), 2567–2583 (2008).

    Article  ADS  Google Scholar 

  28. 28

    B. D. Belan, V. E. Zuev, and M. V. Panchenko, “Main results of airborne sounding of aerosol conducted at the Institute of Atmospheric Optics from 1981 till 1991,” Atmos. Ocean. Opt. 8 (1-2), 131–156 (1995).

    Google Scholar 

  29. 29

    ODAEKS-87 Complex Aerosol Experiment Results, Ed. by V.Ya. Fadeev (TB SB AS USSR, Tomsk, 1989) [in Russian].

    Google Scholar 

  30. 30

    A. V. Andronova, B. D. Belan, D. A. Gillette, A. A. Isakov, V. M. Zhukov, D. A. Zhukovskii, S. M. Kolomiets, M. V. Panchenko, M. A. Sviridenkov, V. V. Smirnov, and I. N. Sokolik, “Microphysical characteristics of the dust aerosol measured during the Soviet-American Experiment (Tadzhikistan, 1989),” Atmos. Environ. 27A (16), 2481–2487 (1993).

    ADS  Google Scholar 

  31. 31

    M. V. Panchenko, S. A. Terpugova, B. A. Bodhaine, A. A. Isakov, M. A. Sviridenkov, I. N. Sokolik, E. V. Romasheva, B. I. Nazarov, A. K. Shukurov, E. I. Chistyakova, and T. C. Johnson, “Optical investigations of dust storms during USSR-US experiments in Tadzhikistan, 1989,” Atmos. Environ. 27A (16), 2503–2509 (1993).

    Article  ADS  Google Scholar 

  32. 32

    M. V. Panchenko, S. A. Terpugova, and A. G. Tumakov, “Annual variations of submicron aerosol fraction as assessed from the data of airborne nephelometric measurements,” Atmos. Res 41, 203–215 (1996).

    Article  Google Scholar 

  33. 33

    M. V. Panchenko, S. A. Terpugova, and V. V. Pol’kin, “Empirical model of the aerosol optical properties in the troposphere over West Siberia,” Atmos. Ocean. Opt. 11 (6), 532–539 (1998)

    Google Scholar 

  34. 34

    M. V. Panchenko and A. G. Tumakov, “Investigation of thermo- and hygrooptical characteristics of atmospheric aerosol above the Atlantic Ocean,” Atmos. Ocean. Opt. 7 (7), 471–475 (1994).

    Google Scholar 

  35. 35

    M. V. Panchenko, V. V. Pol’kin, L. P. Golobokova, M. P. Chubarov, O. G. Netsvetaeva, and V. M. Domysheva, “V Influence of continent on the disperse and chemical composition of aerosol in the near water layer in the Atlantic,” Atmos. Ocean. Opt. 10 (7), 460–466 (1997).

    Google Scholar 

  36. 36

    V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kovalevskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Mikushev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S. M. Sakerin, S. A. Terpugova, G. N. Tolmachev, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “The "OPTIK-E” AN-30 aircraft-laboratory for ecological investigations,” Atmos. Ocean. Opt. 5 (10), 1012–1021 (1992).

    Google Scholar 

  37. 37

    V. E. Zuev, B. D. Belan, M. V. Panchenko, V. V. Pol’kin, S. A. Terpugova, and A. G. Tumakov, “Airborne studies of submicron aerosol in the troposphere over West Siberia,” in Proc. 5th ARM Sci. Team Meeting, March19–23,1995, San Diego, California. P. 241–243.

  38. 38

    M. V. Panchenko, B. D. Belan, and V. S. Shamanaev, “Aircraft-laboratory of the IAO SB RAS in the study of the lake Baykal environment,” Atmos. Ocean. Opt. 10 (4–5), 463–472 (1997).

    Google Scholar 

  39. 39

    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, D. K. Davydov, E. V. Zhidovkin, G. A. Ivlev, A. V. Kozlov, V, Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, V, Shamanaev, and V. P. Shmargunov, “Optik-E AN-30 aircraft laboratory: 20 years of environmental research,” Atmos. Ocean. Technol 29 (11), 64–75 (2012).

    Article  Google Scholar 

  40. 40

    A. Safatov, G. Buryak, I. Andreeva, S. Olkin, I. Reznikova, A. Sergeev, B. Belan, M. Panchenko, D. Simonenkov, and G. Tolmachev, “Altitude profiles of biogenic components of atmospheric aerosols in southwestern Siberia,” Chem. Eng. Transact 16, 225–232 (2008).

    Google Scholar 

  41. 41

    I, Andreeva, A, Safatov, O, Mokrushina, G. A. Buryak, L. I. Puchkova, N. A. Mazurkova, L. I. Burtseva, and G. V. Kalmykova, “Insecticidal, antimicrobial, and antiviral activity of Bacillus thuringiensis ssp. kurstaki strains isolated from atmospheric aerosols in the south of Western Siberia,” Atmos. Ocean. Opt. 27 (6), 479–486 (2014).

    Article  Google Scholar 

  42. 42

    L. Elterman, Vertical Attenuation Model with Eight Surface Meteorological Ranges 213 Kilometers. Report AFCRL-70-0200 AFCRL (Bedford, Mass., 1970).

  43. 43

    O. B. Toon and J. B. Pollack, “A global average model of atmospheric aerosols for radiative transfer calculations,” J. Appl. Math 15, 225–246 (1976).

    Google Scholar 

  44. 44

    E. P. Shettle and R. W. Fenn, Models of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. Report AFCRL-TR-79-0214 (1979).

  45. 45

    F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, Jr., L. W. Abreu, J. E. A. Selby, R. W. Fenn, and R. A. McClatchey, “Atmospheric transmittance radiance,” Environ. Res. Papers, No. 697, 21–41 (1980).

    Google Scholar 

  46. 46

    K. Ya. Kondrat’ev and D. V. Pozdnyakov, Aerosol Models of the Atmosphere (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  47. 47

    G. M. Krekov and R. F. Rakhimov, Optical Location Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  48. 48

    G. M. Krekov and R. F. Rakhimov, Optical Models of Atmospheric Aerosol (TB SB AS USSR, Tomsk, 1986) [in Russian].

    Google Scholar 

  49. 49

    F. X. Kneizis, L. W. Abreu, G. P. Anderson, G. H. Chetwynd, E. P. Shettle, A. Berk, L, Bernstein, D, Robertson, P. Acharya, L, Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clouth, The Modtran 2/3. Report and Lowtran 7 Model (Phillips Laboratory, Massachusetts, Hanscon, 1996).

  50. 50

    M. V. Panchenko, Yu. A. Pkhalagov, R. F. Rakhimov, S. M. Sakerin, and B. D. Belan, “Geophysical factors of the aerosol weather formation in the Western Siberia,” Atmos. Ocean. Opt. 12 (10), 883–894 (1999).

    Google Scholar 

  51. 51

    G. G. Matvienko, B. D. Belan, M. V. Panchenko, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Yu. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol’kin, E. P. Yausheva, D. G. Chernov, S. L. Odintsov, V. D. Burlakov, M. Yu. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, D. B. Belan, M. V. Grishaev, V. V. Belov, S. V. Afonin, Yu. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikov, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, B. A. Voronin, V. I. Serdyukov, E. R. Polovtseva, S. S. Vasil’chenko, O. V. Tikhomirova, Yu. N. Ponomarev, O. A. Romanovskii, L. N. Sinitsa, V. N. Marichev, M. V. Makarova, A. S. Safatov, A. S. Kozlov, S. B. Malyshkin, and T. A. Maksimova, “Instrumentation complex for comprehensive study of atmospheric parameters,” Int. J. Remote Sens. 35 (15), 5651–5676 (2014).

    Google Scholar 

  52. 52

    G. G. Matvienko, B. D. Belan, M. V. Panchenko, O. A. Romanovskii, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y, Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol’kin, E. P. Yausheva, D. G. Chernov, T. B. Zhuravleva, T. V. Bedareva, S. L. Odintsov, V. D. Burlakov, A. V. Nevzorov, M. Y. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, Y. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, A. S. Kozlov, and S. B. Malyshkin, “Complex experiment on studying the microphysical, chemical, and optical properties of aerosol particles and estimating the contribution of atmospheric aerosol-to-Earth radiation budget,” Atmos. Meas. Tech. 8, 4507–4520 (2015).

    Article  Google Scholar 

  53. 53

    D. K. Davydov, B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlestin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Oceanic Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  54. 54

    V. V. Pol’kin and Vas. V. Pol’kin, “Inter-annual and seasonal variability of the diurnal behavior of aureole scattering phase function at the aerosol monitoring station of LOA IAO SB RAS in 2010–2014,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (2015).

  55. 55

    V. S. Kozlov, V. P. Shmargunov, M. V. Panchenko, D. G. Chernov, A. S. Kozlov, and S. B. Malyshkin, “Seasonal variability of the black carbon size distribution in the atmospheric aerosol,” Russ. Phys. J. 58 (12), 1804–1810 (2016).

    Article  Google Scholar 

  56. 56

    M. V. Panchenko, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, V. P. Shmargunov, and E. P. Yausheva, “The formation of average regional aerosol background,” Atmos. Oceanic Opt. 8 (7), 1112–1114 (1995).

    Google Scholar 

  57. 57

    S. M. Sakerin, D. M. Kabanov, I. M. Nasrtdinov, S. A. Turchinovich, and Yu. S. Turchinovich, “The results of two-point experiments on the estimation of the urban anthropogenic effect on the characteristics of atmospheric transparency,” Atmos. Ocean. Opt. 23 (2), 88–94 (2010).

    Article  Google Scholar 

  58. 58

    V. G. Arshinova, B. D. Belan, T. M. Rasskazchikova, and D. V. Simonenkov, “Influence of the Tomsk city on the chemical and disperse composition of the surface aerosol,” Atmos. Ocean. Opt. 21 (6), 421–425 (2008).

    Google Scholar 

  59. 59

    A. V. Talovskaya, D. V. Simonenkov, E. A. Filimonenko, B. D. Belan, E. G. Yazikov, D. A. Rychkova, and S. S. Il’enok, “Study of aerosol composition in Tomsk region background and urban stations (the winter period 2012/13),” Opt. Atmos. Okeana 27 (11), 999–1005 (2014).

    Google Scholar 

  60. 60

    E. P. Yausheva, M. V. Panchenko, V. S. Kozlov, S. A. Terpugova, and D. G. Chernov, “The influence of the city on the atmospheric aerosol characteristics in Tomsk Akademgorodok in transitional seasons,” Opt. Atmos. Okeana 27 (11), 981–988 (2014).

    Google Scholar 

  61. 61

    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Time content variations of submicron aerosol and soot in the near-ground layer of the West Siberia atmosphere,” Atmos. Ocean. Opt. 20 (12), 987–990 (2007).

    Google Scholar 

  62. 62

    M. V. Panchenko, S. A. Terpugova, V. S. Kozlov, V. V. Pol’kin, and E. P. Yausheva, “Annual behavior of the condensation activity of submicron aerosol in the atmospheric surface layer of Western Siberia,” Atmos. Ocean. Opt. 18 (8), 607–611 (2005).

    Google Scholar 

  63. 63

    M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, V. V. Pol’kin, and E. P. Yausheva, “Multiyear variations in aerosol condensation activity in Tomsk,” Atmos. Ocean. Opt. 25 (4), 251–255 (2012).

    Article  Google Scholar 

  64. 64

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, A. S. Kozlov, S. B. Malyshkin, D. V. Simonenkov, and P. N. Antokhin, “Nucleation bursts in the atmosphere over boreal zone in West Siberia. Part I. Classification and frequency,” Opt. Atmos. Okeana 27 (9), 766–774 (2014).

    Google Scholar 

  65. 65

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, A. V. Kozlov, A. S. Kozlov, and V. G. Arshinova, “Nucleation bursts Opt. Atmos. Okeana in the atmosphere over boreal zone in West Siberia. Part II. Formation and growth rates of nanoparticles,” Opt. Atmos. Okeana 28 (8), 730–737 (2015).

    Google Scholar 

  66. 66

    T. Nieminen, V.-M. Kerminen, T. Petaja, P. P. Aalto, M. Arshinov, E. Asmi, U. Baltensperger, D. C. Beddows, J. P. Beukes, D. Collins, A. Ding, R. M. Harrison, B. Henzing, R. Hooda, M. Hu, U. Horrak, N. Kivekas, K. Komsaare, R. Krejci, A. Kristensson, L. Laakso, A. Laaksonen, W. R. Leaitch, H. Lihavainen, N. Mihalopoulos, Z. Nemeth, W. Nie, C. O’Dowd, I. Salma, K. Sellegri, B. Svenningsson, E. Swietlicki, P. Tunved, V. Ulevicius, V. Vakkari, M. Vana, A. Wiedensohler, Z. Wu, A. Virtanen, and M. Kulmala, “Global analysis of continental boundary layer new particle formation based on long-term measurements,” Atm-os. Chem. Phys. 18 (19), 14737–14756 (2018).

    Article  ADS  Google Scholar 

  67. 67

    V. E. Zuev, B. D. Belan, and G. O. Zadde, Optical Weather (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  68. 68

    G. P. Gushchin, “USSR ozonometric network,” Meteorol. Gidrol., No. 3, 111–116 (1979).

  69. 69

    B. D. Belan and G. O. Zade, Spectral Transparency and Aerosol Attenuation over USSR (TB SB AS USSR, Tomsk, 1987) [in Russian].

    Google Scholar 

  70. 70

    B. N. Holben, T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik, “Aeronet’s version 2.0 quality assurance criteria,” Proc. SPIE—Int. Soc. Opt. Eng. (2006). https://doi.org/10.1117/12.706524

  71. 71

    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and V. V. Knyazev, “Sun photometers for measuring spectral air transparency in stationary and mobile conditions, Atmos. Ocean. Opt. 26 (4), 352–356 (2013).

    Article  Google Scholar 

  72. 72

    S. M. Sakerin and D. M. Kabanov, “Spectral dependence of the atmospheric aerosol optical depth in the wavelength range from 0.37 to 4 μm,” Atmos. Ocean. Opt. 20 (2), 141–149 (2007).

    Google Scholar 

  73. 73

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).

    Article  ADS  Google Scholar 

  74. 74

    D. M. Kabanov, T. R. Kurbangaliev, T. M. Rasskazchikova, S. M. Sakerin, and O. G. Khutorova, “the influence of synoptic factors on variations of atmospheric aerosol optical depth under Siberian conditions,” Atmos. Oceanic Opt. 24 (6), 543–553 (2011).

    Article  Google Scholar 

  75. 75

    Study of Aerosol Radiative Parameters in the Russia Asia, Ed. by S.M. Sakerin (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  76. 76

    D. M. Kabanov, S. A. Beresnev, S. Yu. Gorda, G. I. Kornienko, S. V. Nikolashkin, S. M. Sakerin, and M. A. Tashchilin, “Diurnal behavior of aerosol optical depth of the atmosphere in a few regions of Asian part of Russia,” Atmos. Oceanic Opt. 26 (6), 466–472 (2013).

    Article  Google Scholar 

  77. 77

    S. M. Sakerin, S. A. Beresnev, D. M. Kabanov, G. I. Kornienko, S. V. Nikolashkin, V. A. Poddubny, M. A. Tashchilin, Yu. S. Turchinovich, B. N. Holben, and A. Smirnov, “Analysis of approaches to modeling the annual and spectral behaviors of atmospheric aerosol optical depth in Siberia and Primorye,” Atmos. Oceanic Opt. 28 (2), 145–157 (2015).

    Article  Google Scholar 

  78. 78

    V. A. Poddubnyi, S. M. Sakerin, A. P. Luzhetskaya, E. S. Nagovitsyna, S. A. Beresnev, and Yu. I. Markelov, “Monitoring of atmospheric aerosol with the use of solar spectral photometry and atmospheric fluid-location technique for retrieval of the mean pollution field,” Vestn. UrO RAN 2 (44), 37–53 (2013).

    Google Scholar 

  79. 79

    G. S. Golitsyn and A. S. Ginzburg, Natural Analogues of a Nuclear Catastrophe. Climate and Biological Consequences of a Nuclear War (Nauka, Moscow, 1987), p. 100–123 [in Russian].

    Google Scholar 

  80. 80

    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  81. 81

    T. Zhuravleva, D. Kabanov, I. Nasrtdinov, T. Russkova, S. Sakerin, A. Smirnov, and B. Holben, “Radiative characteristics of aerosol under smoke mist conditions in Siberia during summer 2012,” Atmos. Meas. Tech., No. 10, 179–198 (2017). https://doi.org/10.5194/amt-10-179-2017

  82. 82

    V. S. Kozlov, M. V. Panchenko, and A. G. Tumakov, “Influence of regimes of burning hydrocarbon fuels on the optical properties of smoke aerosols,” Atmos. Oceanic Opt. 6 (10), 733–738 (1993).

    Google Scholar 

  83. 83

    V. S. Kozlov, R. F. Rakhimov, and V. P. Shmargunov, “Variations in condensation properties of mixed smoke from biomass burning at different smoke evolution stages,” Atmos. Ocean. Opt. 31 (1), 9–18 (2018).

    Article  Google Scholar 

  84. 84

    O. B. Popovicheva, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, E. D. Kireeva, N. M. Persiantseva, M. A. Timofeev, G. Engling, K. Eleftheriadis, E. Diapouli, M. V. Panchenko, R. Zimmermann, and J. Schnelle-Kreis, “Optical-microphysical and physical-chemical characteristics of siberian biomass burning: Experiments in aerosol chamber,” Atmos. Oceanic Opt. 29 (6), 492–500 (2016).

    Article  Google Scholar 

  85. 85

    A.-C. Kalogridis, O. B. Popovicheva, G. Engling, E. Diapouli, K. Kawamura, E. Tachibana, K. Ono, V. S. Kozlov, and K. Eleftheriadis, “Smoke aerosol chemistry and aging of siberian biomass burning emissions in a large aerosol chamber,” Atmos. Environ. 185, 15–28 (2018).

    Article  ADS  Google Scholar 

  86. 86

    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    Article  ADS  Google Scholar 

  87. 87

    S. S. Lappo, A. B. Sokov, V. P. Tereshchenkov, and S. A. Dobrolyubov, “The ocean and climate oscillations,” in Russian Science:To Hold up and Return (Moscow, 1997), p. 245–251 [in Russian].

    Google Scholar 

  88. 88

    S. M. Sakerin and D. M. Kabanov, “Spatial inhomogeneities and the spectral behavior of atmospheric aerosol optical depth over the Atlantic Ocean. Part 1,” J. Atmos. Sci. 59 (3), 484–500 (2002).

    Article  ADS  Google Scholar 

  89. 89

    S. M. Sakerin, D. M. Kabanov, A. V. Smirnov, and B. N. Holben, “Aerosol optical depth of the atmosphere over ocean in the wavelength range 0.37–4 μm,” Int. J. Remote Sens. 29 (9), 2519–2547 (2008). https://doi.org/10.1080/01431160701767492

    ADS  Article  Google Scholar 

  90. 90

    G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, and E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10 (5), 725–735 (1993).

    Article  ADS  Google Scholar 

  91. 91

    A. M. Ignatov, L. L. Stowe, S. M. Sakerin, and G. K. Korotaev, “Validation of NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989,” J. Geophys. Res. D 100 (3), 5123–5132 (1995).

    Article  ADS  Google Scholar 

  92. 92

    Liu Li, M. I. Mishchenko, I. Geogdzhayev, A. Smirnov, S. M. Sakerin, D. M. Kabanov, and O. A. Ershov, “Global validation of two-channel avhrr aerosol optical thickness retrievals over the oceans,” J. Quant. Spectrosc. Radiat. Transfer 88 (1–3), 97–109 (2004).

    Article  ADS  Google Scholar 

  93. 93

    A. Smirnov, B. N. Holben, S. M. Sakerin, D. M. Kabanov, I. Slutsker, M. Chin, T. L. Diehl, L. A. Remer, R. Kahn, A. Ignatov, M. Mishechenko, L. Liu, T. L. Kucsera, D. Giles, T. F. Eck, and O. Kopelevich, “Ship-based aerosol optical depth measurements in the Atlantic Ocean, comparison with satellite retrievals and GOSART model,” Geophys. Rev. Lett. 33 (L14817) (2006). https://doi.org/10.1029/2006GL026051

  94. 94

    A. Smirnov, B. N. Holben, I. Slutsker, D. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. Quinn, J. Sciare, S. Kinne, M. Harvey, T. Smyth, S, Piketh, T. Zielinski, A. Proshutinsky, J. Goes, D. A. Seigel, P. Larouche, V. F. Radionov, P. Goloub, K. Krishnamoorthy, R. Matarrese, L. Robertson, and F. Jourdin, “Maritime Aerosol Network as a component of Aerosol Robotic Network,” J. Geophys. Res. 114 (D06204) (2009). https://doi.org/10.1029/2008JD011257

  95. 95

    A. Smirnov, B. N. Holben, D. M. Giles, I. Slutsker, N. T. O’Neill, T. F. Eck, A. Macke, P. Croot, Y. Courcoux, S. M. Sakerin, T. J. Smyth, T. Zielinski, G. Zibordi, J. I. Goes, M. Harvey, P. K. Quinn, N. B. Nelson, V. F. Radionov, C. M. Duarte, R. Losno, J. Sciare, K. Voss, S. Kinne, N. R. Nalli, E. Joseph, Moorthy K. Krishna, D. Covert, S. K. Gulev, G. Milinevsky, P. Larouche, S. Belanger, E. Horne, M. Chin, L. A. Remer, R. A. Kahn, J S. Reid, M. Schulz, C. L. Heald, J. Zhang, K. Lapina, R. G. Kleidman, J. Griesfeller, B. J. Gaitley, Q. Tan, and T. L. Diehl, “Maritime Aerosol Network as a component of AERONET—First results and comparison with global aerosol models and satellite retrievals,” Atmos. Meas. Tech., No. 4, 583–597 (2011).

  96. 96

    S. M. Sakerin, D. M. Kabanov, V. V. Polkin, V. F. Radionov, B. N. Holben, and A. Smirnov, “Variations in aerosol optical and microphysical characteristics along the route of Russian Antarctic expeditions in the East Atlantic,” Atmos. Oceanic Opt. 30 (1), 89–102 (2017).

    Article  Google Scholar 

  97. 97

    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. V. Pol’kin, and V. F. Radionov, “Zonal distribution of aerosol physicochemical characteristics in the Eastern Atlantic,” Atmos. Ocean. Opt. 31 (5), 492–501 (2018).

    Article  Google Scholar 

  98. 98

    C. Tomasi, A. A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, M. Mazzola, R. S. Stone, C. Lanconelli, V. Vitale, B. N. Holben, S. Nyeki, C. Wehrli, V. Altonen, G. de Leeuw, E. Rodriguez, A. B. Herber, K. Stebel, A. Stohl, N. T. O’Neill, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, J. Butler, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar regions,” Earth-Sci. Rev. 140, 108–157 (2015).

    Article  ADS  Google Scholar 

  99. 99

    D. G. Chernov, V. S. Kozlov, M. V. Panchenko, Yu. S. Turchinovich, V. F. Radionov, A. V. Gubin, and A. N. Prakhov, “Features of the variability of aerosl and soot concentration in the surface air layer in Barentsburg (Spitsbergen) in 2011–2013,” Problemy Arktiki Antarktiki, No. 4, 34–44 (2014).

    Google Scholar 

  100. 100

    S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, L. P. Golobokova, Vas. V. Polkin, Vik. V. Polkin, K. A. Shmirko, D. M. Kabanov, T. V. Khodzher, N. A. Onischuk, A. N. Pavlov, V. L. Potemkin, and V. F. Radionov, “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea Route,” Atmos. Chem. Phys. 15 (21). 12413–12443 (2015).

    Article  ADS  Google Scholar 

  101. 101

    V. V. Pol’kin, Vas. V. Pol’kin, and M. V. Panchenko, “Annual variations of microphysical properties of aerosol at the station "Vostok” in 2009 and 2011,” Opt. Atmos. Okeana 25 (11), 963–967 (2012).

    Google Scholar 

  102. 102

    M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  103. 103

    M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Pol’kin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  104. 104

    M. V. Panchenko and T. B. Zhuravleva, “Vertical profiles of optical and microphysical characteristics of tropospheric aerosol from aircraft measurements,” Light Scat. Rev., 199–234 (2015). https://doi.org/10.1007/978-3-662-46762-6

  105. 105

    M. V. Panchenko, S. A. Terpugova, V. V. Pol’kin, V. S. Kozlov, and D. G. Chernov, “Modeling of aerosol radiation-relevant parameters in the troposphere of Siberia on the basis of empirical data,” Atmosphere 9 (11), 414–430 (2018).

    Article  ADS  Google Scholar 

  106. 106

    J.-D. Paris, Ph. Ciais, Ph. Nedelec, A. Stohl, B. D. Belan, M. Yu. Arshinov, C. Carouge, G. Golitsyn, and I. G. Granberg, “New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns,” Bull. Am. Meteorol. Soc. 91 (5), 625–641 (2010).

    Article  ADS  Google Scholar 

  107. 107

    V. S. Kozlov, M. V. Panchenko, V. P. Shmargunov, D. G. Chernov, E. P. Yausheva, V. V. Pol’kin, and S. A. Terpugova, “Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian subarctic,” Chem. Sustainable Dev. 24 (4), 423–440 (2016).

    Google Scholar 

  108. 108

    J.-D. Paris, A. Stohl, Ph. Nedelec, M. Yu. Arshinov, M. V. Panchenko, V. P. Shmargunov, K. S. Law, B. D. Belan, and Ph. Ciais, “Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements,” Atmos. Chem. Phys. 9 (23), 9315–9327 (2009).

    Article  ADS  Google Scholar 

  109. 109

    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  110. 110

    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

  111. 111

    A. A. Vinogradova and A. V. Vasileva, “Black Carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).

    Article  Google Scholar 

  112. 112

    I. B. Konovalov, D. A. Lvova, M. Beekmann, H. Jethva, E. F. Mikhailov, J.-D. Paris, B. D. Belan, V. S. Kozlov, P. Ciais, and M. O. Andreae, “Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths,” Atmos. Chem. Phys. 18, 14889–14924 (2018). https://doi.org/10.5194/acp-18-14889-2018

    ADS  Article  Google Scholar 

  113. 113

    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016).

    Article  Google Scholar 

  114. 114

    T. B. Zhuravleva, M. V. Panchenko, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in extremely smoke-laden atmosphere according to data of aircraft observations,” Atmos. Oceanic Opt. 31 (1), 25–30 (2018).

    Article  Google Scholar 

  115. 115

    A. Gelencser,Carbonaceous Aerosol (Springer, Dordrecht, 2004).

    Google Scholar 

  116. 116

    N. G. Voronetskaya, G. S. Pevneva, A. K. Golovko, A. S. Kozlov, M. Yu. Arshinov, B. D. Belan, D. V. Simonenkov, and G. N. Tolmachev, “Hydrocarbon composition of tropospheric aerosol in the south of Western Siberia,” Atmos. Oceanic Opt. 27 (4), 547–557 (2014).

    Article  Google Scholar 

  117. 117

    M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, S. B. Malyshkin, G. S. Pevneva, D. V. Simonenkov, and G. N. Tolmachev, “Annual dynamics of aerosol organic components in the free atmosphere over South-Western Siberia,” Atmos. Ocean. Opt. 29 (1), 1–4 (2016).

    Article  Google Scholar 

  118. 118

    A. S. Kozlov, A. K. Petrov, L. V. Kujbida, S. B. Malyshkin, M. Yu. Arshinov, B. D. Belan, and D. K. Davydov, “Nucleation bursts in the atmosphere over boreal zone in Western Siberia. Part III. Chemical nature of the spring bursts according to the measurement data from Fonovoaya Observatory,” Opt. Atmos. Okeana 30 (6), 463–466 (2017).

    Google Scholar 

  119. 119

    M. Yu. Arshinov, B. D. Belan, S. B. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, S. B. Malyshkin, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 2. Vertical distribution,” Opt. Atmos. Okeana 30 (9), 733–739 (2017).

    Google Scholar 

  120. 120

    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, A. S. Kozlov, S. B. Malyshkin, G. S. Pevneva, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 3. Forest fire products,” Opt. Atmos. Okeana 30 (9), 740–749 (2017).

    Google Scholar 

  121. 121

    Yu. S. Lyubovtseva and V. N. Kapustin, “Observation of natural photochemical hazes,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (6), 620–626 (1976).

    Google Scholar 

  122. 122

    J. Tröstl, W. K. Wayne, H. Gordon, M. Heinritzi, Yan Chao, U. Molteni, L. Ahlm, C. Frege, F. Bianchi, R. Wagner, M. Simon, K. Lehtipalo, Ch. Williamson, J.S. Craven, J. Duplissy, A. Adamov, J. Almeida, A.‑K. Bernhammer, M. Breitenlechner, S. Brilke, A. Dias, S. Herhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, M. Gysel, A. Hansel, Ch. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, H. Keskinen, J. Kim, M. Krapf, A. Kürten, A. Laaksonen, M. Lawler, M. Leiminger, S. Mathot, O. Möhler, T. Nieminen, A. Onnela, T. Petäjä, F. M. Piel, P. Miettinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, K. Sengupta, M. Sipilä, J.N. Smith, G. Steiner, A. Tomè, A. Virtanen, A. C. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye, K. S Carslaw., J. Curtius, J. Dommen, J. Kirkby, M. Kulmala, I Riipinen., D. R. Worsnop, N. M. Donahue, and U. Baltensperger, “The role of low-volatility organic compounds in initial particle growth in the atmosphere,” Nature (Gr. Brit.). 533 (7604), 527–531 (2016).

Download references

ACKNOWLEDGMENTS

The authors cordially thank the large personnel of the Institute who, over 50 years, at different stages participated in the development of the methodology, creation of instrumentation, and collectively shared successes and numerous difficulties. We should also specially note that an advance could hardly be possible without the close, friendly cooperation with many teams of Russian and foreign scientific organizations. We are deeply indebted to all those who worked with us in expeditions, met at conferences, debated and exchanged ideas, prepared publications, implemented collaborative projects.

Funding

The results discussed in the paper were obtained within the main subject area of IAO SB RAS and, in different years, were supported by grants from the Russian Fund for Basic Research, the Federal Target Program, and programs of the RAS and the SB RAS. Financing received in 2019 as part of the Russian Science Foundation (RSF) project (agreement no. 19-77-20 092) “Conducting research on the basis of the existing world-level scientific infrastructure” will undoubtedly favor the development of the study of such a unique object as atmospheric aerosol.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Panchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panchenko, M.V., Kabanov, M.V., Pkhalagov, Y.A. et al. Integrated Studies of Tropospheric Aerosol at the Institute of Atmospheric Optics (Development Stages). Atmos Ocean Opt 33, 27–41 (2020). https://doi.org/10.1134/S1024856020010108

Download citation

Keywords:

  • aerosol
  • optical and microphysical characteristics
  • scattering
  • extinction
  • and absorption coefficients
  • spectral transparency
  • aerosol optical depth