Skip to main content

Laser and Optical Sounding of the Atmosphere

Abstract

Lidar and searchlight instruments and techniques for atmospheric research developed at the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, in recent years are described. Key results obtained using these techniques are presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

REFERENCES

  1. 1

    Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Ed. by C. Weitkamp (Springer, 2005).

    Google Scholar 

  2. 2

    Searchlight Beam in the Atmosphere, Ed. by G.V. Rozenberg (Publishing House of the Academy of Sciences of USSR, Moscow, 1960) [in Russian].

    Google Scholar 

  3. 3

    S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, I. B. Serikov, and A. Ya. Sukhanov, Lidar Spectroscopic Gas Analysis of the Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2014) [in Russian].

    Google Scholar 

  4. 4

    Lidar Monitoring of Cloud and Aerosol Fields, Trace A-tmospheric Gases, and Meteoparameters, Ed. by G.G. Matvienko (Publishing House of IAO SB RAS, Tomsk, 2015) [in Russian].

    Google Scholar 

  5. 5

    G. G. Matvienko, Yu. S. Balin, S. M. Bobrovnikov, O. A. Romanovskii, G. P. Kokhanenko, S. V. Samoilova, I. E. Penner, E. V. Gorlov, V. I. Zharkov, S. A. Sadovnikov, O. V. Kharchenko, S. V. Yakovlev, O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. A. Nevzorov, and A. V. Nevzorov, Siberian Lidar Station: Instruments and Results (Publishing House of IAO SB RAS, Tomsk, 2016) [in Russian].

    Google Scholar 

  6. 6

    I. Serikov and S. Bobrovnikov, “Atmospheric temperature profiling with pure rotational Raman lidars,” in Recents Advances in Atmospheric Lidars, Ed. by L. Fiorani and V. Mitev (INOE, 2010), p. 149–216

    Google Scholar 

  7. 7

    B. I. Vasil’ev and O. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,” Quantum Elektron. 36 (9), 801–820 (2006).

    Article  ADS  Google Scholar 

  8. 8

    V. D. Burlakov, S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, and O. A. Romanovskii, “Retrieval of vertical ozone concentration profiles from the data of lidar sensing,” Rus. Phys. J. 58 (8), 1111–1117 (2015).

    Article  Google Scholar 

  9. 9

    S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, A. P. Makeev, O. A. Romanovskii, and O. V. Kharchenko, “Lidar complex for measurement of vertical ozone distribution in the upper troposphere–stratosphere,” Atmos. Ocean. Opt. 31 (6), 702–708 (2018).

    Article  Google Scholar 

  10. 10

    O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, “Broadband IR lidar for gas analysis of the atmosphere,” J. Appl. Spectrosc. 85 (3), 457–461 (2018).

    Article  ADS  Google Scholar 

  11. 11

    O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, V. K. Shumsky, and S. V. Yakovlev, “Optical parametric oscillators in lidar sounding of trace atmospheric gases in the 3–4 μm spectral range,” Opt. Mem. Neural Networks 25 (2), 88–94 (2016).

    Article  Google Scholar 

  12. 12

    G. G. Matvienko, O. A. Romanovskii, S. A. Sadovnikov, A. Ya. Sukhanov, O. V. Kharchenko, and S. V. Yakovlev, “Study of the possibility of using a parametric-light-generator-based laser system for lidar probing of the composition of the atmosphere,” J. Opt. Technol 84 (6), 408–414 (2017).

    Article  Google Scholar 

  13. 13

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inouye, Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Vertical distribution of greenhouse gases above Western Siberia by the long-term measurement data,” Atm-os. Ocean. Opt. 22 (3), 316–325 (2009).

    Article  Google Scholar 

  14. 14

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. M. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksutov, M. Sasakawa, and K. Shimoyama, “The dynamics in vertical distribution of greenhouse gases in the atmosphere,” Opt. Atmos. Okeana 25 (12), 1051–1061 (2012).

    Google Scholar 

  15. 15

    www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM_ru.pdf. Cited February 7, 2019.

  16. 16

    M. R. Allen, O. P. Dube, W. Solecki, F. Aragon-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M. Wairiu, and K. Zickfeld, “Framing and context,” in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Ed. by V. Masson-Delmotte, P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (in press).

  17. 17

    Assessment Report about Climate Changes and their Sequences on the Russian Federation Territory. Vol. 1. Climate Changes (Rosgidromet, Moscow, 2008) [in Russian].

  18. 18

    B. Connor, H. Bosch, J. McDuffie, T. Taylor, D. Fu, C. Frankenberg, C. O’Dell, V. H. Payne, M. Gunson, R. Pollock, J. Hobbs, F. Oyafuso, and Jiang Yibo, “Quantification of uncertainties in OCO-2 measurements of XCO2: Simulations and linear error analysis,” Atmos. Meas. Tech. 9, 5227–5238 (2016).

    Article  Google Scholar 

  19. 19

    G. Ehret, C. Kiemle, M. Wirth, and A. Amediek, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path absorption lidar: A sensitivity analysis,” J. Appl. Phys. 90, 593–608 (2008).

    Article  Google Scholar 

  20. 20

    J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, Ying Mei, and Yang Melissa, “Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar,” Atmos. Meas. Tech. 11, 127–140 (2018).

    Article  Google Scholar 

  21. 21

    G. Han, X. Ma, A. Liang, T. Zhang, Y. Zhao, M. Zhang, and W. Gong, “Performance evaluation for China’s planned CO2-IPDA,” Remote Sens. 9, 768 (2017).

    Article  ADS  Google Scholar 

  22. 22

    G. Ehret, P. Bousquet, C. Pierangelo, M. Alpers, B. Millet, J. B. Abshire, H. Bovensmann, J. P. Burrows, F. Chevallier, P. Ciais, C. Crevoisier, A. Fix, P. Flamant, Ch. Frankenberg, F. Gibert, B. Heim, M. Heimann, S. Houweling, H. W. Hubberten, P. Jockel, K. Law, A. Low, J. Marshall, A. Agusti-Panareda, S. Payan, C. Prigent, P. Rairoux, T. Sachs, M. Scholze, and M. Wirth, “MERLIN: A French-German space lidar mission dedicated to atmospheric methane,” Remote Sens. 9, 1052–1081 (2017).

    Article  ADS  Google Scholar 

  23. 23

    J. Caron, Y. Durand, J.-L. Bezy, and R. Meynard, “Performance modelling for A-SCOPE,” Proc. SPIE, Nos. 7479-13 (2009).

  24. 24

    P. Ingmann, A-SCOPE. Esa Report: Advanced Space Carbon and Climate Observation of Planet Earth (ESA/ESTEC, Noordwijk, the Netherlands, 2009).

    Google Scholar 

  25. 25

    G. G. Matvienko and A. Y. Sukhanov, “Application of neural networks for retrieval of the CO2 concentration at aerospace sensing by IPDA-DIAL lidar,” Remote Sens. 11, 659 (2019).

    Article  ADS  Google Scholar 

  26. 26

    G. G. Matvienko and A. Ya. Sukhanov, “Assessing the possibilities of sensing CH4 and CO2 greenhouse gases above the underlying surface with satellite-based IPDA lidar,” Atmos. Ocean. Opt. 28 (3), 245–253 (2015).

    Article  Google Scholar 

  27. 27

    A. Ya. Sukhanov, “Airborne DIAL-IPDA lidar sensing of carbon dioxide inverse problem solution on basis bionic methods,” Opt. Atmos. Okeana 30 (7), 589–597 (2017).

    Google Scholar 

  28. 28

    G. G. Matvienko, G. M. Krekov, and A. Ya. Sukhanov, “Space-borne remote sensing of greenhouse gases by IPDA lidar: A potentialities estimate,” in 25th Intern. Laser Radar Conf., St.-Petersburg, Russia,2010. P. S11P-02.

  29. 29

    G. G. Matvienko and A. Ya. Sukhanov, “Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation,” Proc. SPIE —Int. Soc. Opt. Eng. 9680, CID: 9680 4I (2015).

  30. 30

    D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).

    Article  ADS  Google Scholar 

  31. 31

    F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23, 652–653 (1984).

    Article  ADS  Google Scholar 

  32. 32

    M. Hayman, S. Spuler, and B. Morley, “Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain,” Opt. Express 22 (14), 16976–16990 (2014).

    Article  ADS  Google Scholar 

  33. 33

    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38 (9), 1485–1487 (2013).

    Article  ADS  Google Scholar 

  34. 34

    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds,” Opt. Lett. 39 (19), 5788–5791 (2014).

    Article  ADS  Google Scholar 

  35. 35

    A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Express 23 (19), 24557–24571 (2015).

    Article  ADS  Google Scholar 

  36. 36

    A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express 24 (18), A1257–A1268 (2016).

    Article  ADS  Google Scholar 

  37. 37

    A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22341–22346 (2017).

    Article  ADS  Google Scholar 

  38. 38

    Z. Wang, A. Borovoi, A. Konoshonkin, N. Kustova, D. Liu, and C. Xie, “Extinction matrix for cirrus clouds in the visible and infrared regions,” Opt. Lett. 43 (15), 3578–3581 (2018).

    Article  ADS  Google Scholar 

  39. 39

    J. Ding, P. Yang, R. Holz, S. Platnick, K. Meyer, M. Vaughan, Y. Hu, and M. King, “Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data,” Opt. Express 24 (1), 620–636 (2016).

    Article  ADS  Google Scholar 

  40. 40

    L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, Ch. Werner, S. Niedermeier, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Las. Optoelektron. 29, 51–53 (1997).

    Google Scholar 

  41. 41

    P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).

    Article  ADS  Google Scholar 

  42. 42

    J. -P. Wolf, R. Bourayou, V. Boutou, C. Favre, et al, “Teramobile: A nonlinear femtosecond terawatt lidar. Part 1,” in Proc. ILRC 21, Quebec City, Canada,2002. P. 47–50.

  43. 43

    G. Faye, J. Kasparian, and R. Sauerbrey, “Modifications to the lidar equation due to nonlinear propagation in air,” Appl. Phys. B 73, 157–163 (2001).

    Article  ADS  Google Scholar 

  44. 44

    D. V. Apeksimov, S. N. Bagaev, Yu. E. Geinz, A. A. Zemlyanov, A. M. Kabanov, A. V. Kirpichnikov, Yu. V. Kistenev, G. M. Krekov, M. M. Krekova, G. G. Matvienko, V. K. Oshlakov, E. K. Panina, V. V. Petrov, E. V. Pestryakov, Yu. N. Ponomarev, A. Ya. Sukhanov, B. A. Tikhomirov, V. I. Trunov, S. R. Uogintas, S. A. Frolov, and D. G. Khudorozhkov, Femtosecond Atmospheric Optics, Ed. by S.N. Bagaev and G.G. Matvienko (Publishing House of SB RAS, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  45. 45

    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and V. K. Oshlakov, “Control of the domain of multiple filamentation of terawatt laser pulses along a hundred-meter air path,” Quantum Electron. 45 (5), 408–414 (2015).

    Article  ADS  Google Scholar 

  46. 46

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Global self-focusing and features of multiple filamentation of radiation of a subterawatt Ti:Sapphire laser with a centimeter output aperture along a 150-m path,” Atmos. Ocean. Opt. 31 (1), 31–35 (2018).

    Article  Google Scholar 

  47. 47

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Localized high-intensity light structures during multiple filamentation of Ti:Sapphire laser femtosecond pulses along an air path,” Atmos. Ocean. Opt. 31 (2), 107–111 (2018).

    Article  Google Scholar 

  48. 48

    G. G. Matvienko, V. K. Oshlakov, A. N. Stepanov, and A. Ya. Sukhanov,, “Modelling of radiative transfer by the Monte Carlo method and solving the inverse problem based on a genetic algorithm according to experimental results of aerosol sensing on short paths using a femtosecond laser source,” Quantum Electron. 45 (2), 145–152 (2015).

    Article  ADS  Google Scholar 

  49. 49

    V. P. Galileiskii, A. I. Grishin, A. S. Kolevatov, A. M. Morozov, V. K. Oshlakov, and A. I. Petrov, “Source of pulse broadband incoherent optical radiation for tropospheric sounding,” in Abstracts of the XVIII Workshop “Siberian Aerosols,” November 29 – December 2, 2011, Tomsk, Russia (Publishing House of IAO SB RAS, Tomsk, 2011) [in Russian].

  50. 50

    V. P. Galileiskii, A. S. Kolevatov, and A. M. Morozov, “Source of pulse incoherent optical radiation for tropospheric sounding,” Abstracts of the XIX Workshop “Siberian Aerosols,” November 27–30, 2012, Tomsk, Russia (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

  51. 51

    A. K. Oshlakov, V. K. Oshlakov, V. P. Galileiskii, A. S. Kolevatov, A. M. Morozov, and A. I. Petrov, “Optical breakdown of air under exposure to a broadband radiation,” Atmos. Ocean. Opt. 12 (5), 434–437 (1999).

    Google Scholar 

Download references

Funding

The studies were performed within the State Assignment for IAO SB RAS.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. G. Matvienko, S. M. Bobrovnikov, A. G. Borovoi, D. A. Bochkovskii, V. P. Galileiskii or S. V. Yakovlev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matvienko, G.G., Babushkin, P.A., Bobrovnikov, S.M. et al. Laser and Optical Sounding of the Atmosphere. Atmos Ocean Opt 33, 51–68 (2020). https://doi.org/10.1134/S102485602001008X

Download citation

Keywords:

  • lidar
  • atmosphere
  • scattering
  • aerosol
  • gas impurities