Skip to main content

Metal Vapor Lasers

Abstract

The milestones in the development of researches connected with metal vapor lasers, which have been carried out at V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, since its first days are considered. Some of the most interesting fundamental and applied results are presented. A fairly extensive list of related works, published mainly in the past twenty years, is given.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    G. R. Fowles and W. T. Silfvast, “High-gain laser transition in lead vapor,” Appl. Phys. Lett. 6 (12), 236–237 (1965).

    Article  ADS  Google Scholar 

  2. 2

    M. Bertolotti, “Twenty-five years of the laser: The European contribution to its development,” Opt. Acta 32 (9), 961–980 (1985).

    Article  ADS  Google Scholar 

  3. 3

    A. N. Soldatov and V. I. Solomonov, Self-Terminated Gas Discharge Metal Vapor Lasers (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  4. 4

    P. A. Bokhan, Doctoral Dissertation in Mathematics and Physics (Tomsk State University, Tomsk, 1988).

  5. 5

    G. S. Evtushenko, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 1994).

  6. 6

    A. N. Soldatov, Doctoral Dissertation in Mathematics and Physics (Tomsk State University, Tomsk, 1996).

  7. 7

    V. F. Elaev, G. D. Lyakh, and V. P. Pelenkov, “CuBr laser with average lasing power exceeding 100 W,” Opt. Atmos. Okeana 2 (11), 1228–1229 (1989).

    Google Scholar 

  8. 8

    O. S. Andrienko, F. A. Gubarev, V. A. Dimaki, A. I.   Ivanov, M. E. Levitskii, V. B. Sukhanov, V. O.   Troitskii, V. F. Fedorov, A. G. Filonov, and D. V. Shiyanov, “New generation of CuBr lasers,” Opt. Atmos. Okeana 22 (10), 999–1009 (2009).

    Google Scholar 

  9. 9

    O. S. Andrienko, V. A. Dimaki, G. V. Kolbychev, V. B. Sukhanov, and V. O. Troitskii, “ow-power copper bromide laser,” Atmos. Ocean. Opt. 17 (11), 786–790 (2004).

    Google Scholar 

  10. 10

    O. S. Andrienko, V. B. Sukhanov, V. O. Troitskii, D. Yu. Shestakov, and D. V. Shiyanov, RF Patent No. 2295811, Byull. Izobret., No. 8 (2007).

  11. 11

    A. G. Filonov and D. V. Shiyanov, “A reversible HBr source for a copper bromide vapor laser,” Instrum. Exp. Tech. 56 (3), 349–352 (2013).

    Article  Google Scholar 

  12. 12

    O. S. Andrienko, V. A. Dimaki, G. S. Evtushenko, V. B. Suckhanov, V. O. Troitskii, and D. V. Shiyanov, “Metal and metal halide vapor lasers: New opportunities,” Opt. Eng. 44 (7), 071204–1 (2005).

    Article  ADS  Google Scholar 

  13. 13

    D. V. Shiyanov, G. S. Evtushenko, and V. B. Sukhanov, “Effect of gas mixture composition and pump conditions on the parameters of the CuBr–Ne–H2(HBr) laser,” Quantum Electron. 37 (1), 49–52 (2007).

    Article  ADS  Google Scholar 

  14. 14

    A. G. Filonov, ”On the effect of HBr on the kinetics of the CuBr vapor laser active medium,” Opt. Atmos. Okeana 24 (7), 623–629 (2011).

    Google Scholar 

  15. 15

    V. B. Sukhanov, V. O. Troitskii, F. A. Gubarev, and A. I. Ivanov, RF Patent No. 62742, Byull. Izobret., No. 4 (2007).

  16. 16

    V. A. Dimaki, V. B. Sukhanov, V. O. Troitskii, A. G. Filonov, and D. Yu. Shestakov, “A copper bromide vapor laser with computer control of the repetitive-pulse, train, and waiting operating modes,” Instr. Exp. Tech. 51 (6), 890–893 (2008).

    Article  Google Scholar 

  17. 17

    V. B. Sukhanov, V. F. Fedorov, F. A. Gubarev, V. O. Troitskii, and G. S. Evtushenko, “Capacitive-discharge-pumped copper bromide vapour laser,” Quantum Electron. 37 (7), 603-604 (2007).

    Article  ADS  Google Scholar 

  18. 18

    F. A. Gubarev, V. B. Sukhanov, G. S. Evtushenko, V. F. Fedorov, and D. V. Shiyanov, “CuBr laser excited by a capacitively coupled longitudinal discharge,” IEEE J. Quantum Electron. 45 (2), 171–177 (2009).

    Article  ADS  Google Scholar 

  19. 19

    D. V. Shiyanov, V. B. Sukhanov, and F. A. Gubarev, “Influence of peaking capacitance on the output power of capacitive-discharge-pumped metal halide vapor laser,” IEEE J. Quantum Electron. 54 (2), 1–7 (2018).

    Article  Google Scholar 

  20. 20

    D. V. Shiyanov, V. B. Sukhanov, G. S. Evtushenko, and N. Yu. Tkachenko, “CuI vapor laser with in-built reactor,” Opt. Atmos. Okeana 25 (8), 721–726 (2012).

    Google Scholar 

  21. 21

    M. V. Trigub, D. V. Shiyanov, V. B. Sukhanov, and G. S. Evtushenko, “MnBr vapor active medium with a built-in reactor at 100-kHz pulse repetition frequency,” Atmos. Ocean. Opt. 27 (5), 458–462 (2014).

    Article  Google Scholar 

  22. 22

    M. V. Trigub, S. N. Torgaev, and V. F. Fedorov, “Semiconductor CuBr-laser pumping sources,” Izv. Tom. Politekhn. Univ. 317 (4), 164–168 (2010).

    Google Scholar 

  23. 23

    A. N. Soldatov and V. F. Fedorov, “Cu vapor laser with a pulse repetition rate of 230 kHz,” Izv. Vyssh. Ucheb. Zaved. Fiz. 26 (9), 80–84 (1983).

    Google Scholar 

  24. 24

    G. S. Evtushenko, Yu. P. Polunin, and V. F. Fedorov, “Study of pulse periodic lasing in Au vapors under high frequencies (up to 100 kHz),” Zh. Prikl. Spektrosk. 46 (6), 1009–1011 (1987).

    Google Scholar 

  25. 25

    G. S. Evtushenko, G. G. Petrash, V. B. Sukhanov, and V. F. Fedorov, “CuBr laser with a pulse repetition rate up to 300 kHz,” Quantum Electron. 28 (3), 775–777 (1999).

    Article  ADS  Google Scholar 

  26. 26

    F. A. Gubarev, V. F. Fedorov, G. S. Evtushenko, V. B. Sukhanov, and S. S. Zaikin, “CuBr laser with a pulse repetition rate of 400 kHz,” Izv. Tom. Politekhn. Univ. 312 (2), 106–107 (2008).

    Google Scholar 

  27. 27

    V. O. Nekhoroshev, V. F. Fedorov, G. S. Evtushenko, and S. N. Torgaev, “Copper bromide vapour laser with a pulse repetition rate up to 700 kHz,” Quantum Electron. 42 (10), 877–879 (2012).

    Article  Google Scholar 

  28. 28

    D. V. Shiyanov, G. S. Evtushenko, V. B. Sukhanov, and V. F. Fedorov, “A copper bromide vapour laser with a high pulse repetition rate,” Quantum Electron. 32 (8), 680–682 (2002).

    Article  ADS  Google Scholar 

  29. 29

    A. N. Soldatov, V. F. Fedorov, and N. A. Yudin, “Efficiency of a copper vapour laser with partial discharge of a storage capacitor,” Quantum Electron. 24 (8), 677–678 (1994).

    Article  ADS  Google Scholar 

  30. 30

    P. A. Bokhan and V. I. Solomonov, “Mechanism of laser action in copper vapor,” Quantum Electron. 3 (6), 481–483 (1973).

    ADS  Google Scholar 

  31. 31

    A. I. Fedorov and D. V. Shiyanov, “Highly efficient CuBr laser operating in the double pulse pumping mode,” Pis’ma Zh. Tech. Fiz. 43 (5), 10–16 (2017).

    Google Scholar 

  32. 32

    A. I. Fedorov and D. V. Shiyanov, “Increase of effectiveness for a low-frequency CuBr-laser operating in the regime of double pumping pulses,” Usp. Prikl. Fiz. 5 (3), 288–298 (2017).

    Google Scholar 

  33. 33

    M. V. Trigub, V. V. Vlasov, D. V. Shiyanov, V. B. Sukhanov, and V. O. Troitskii, “Enhancement of pumping efficiency of a CuBr laser by means of modification of the discharge circuit,” Opt. Atmos. Okeana. 30 (12), 1069–1072 (2017).

    Google Scholar 

  34. 34

    V. B. Sukhanov, D. V. Shiyanov, and O. S. Andrienko, “Active element of a metal vapor laser with a built-in metal halide reactor,” in Abstr. of “Metal Vapor Lasers” Symposium (Diapazon-Plyus, Rostov-on-Don, 2008) [in Russian].

  35. 35

    O. S. Andrienko, V. B. Sukhanov, V. O. Troitskii, and D. V. Shiyanov, RF Patent No. 2420844, Byull. Izobret., No. 20 (2011).

  36. 36

    M. V. Trigub, D. V. Shiyanov, and G. S. Evtushenko, “Amplifying characteristics of the active element of a CuCl vapor laser with a built-in reactor,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (10), 46–50 (2012).

    Google Scholar 

  37. 37

    D. V. Shiyanov, M. V. Trigub, V. B. Sukhanov, G. S. Evtushenko, and V. V. Vlasov, “Frequency-energy and amplifying parameters fo CuCl laser with a built-in reactor,” Zh. Tekh. Fiz. 85 (4), 93–96 (2015).

    Google Scholar 

  38. 38

    D. V. Shiyanov, V. B. Sukhanov, and G. S. Evtushenko, “Metal halides vapor lasers with inner reactor and small active volume,” Proc. SPIE—Int. Soc. Opt. Eng. 10614, 1061404.

  39. 39

    V. B. Sukhanov and D. V. Shiyanov, “MVLs based on metal alloys. Multiline lasing,” in Atomic and Molecular Pulsed Lasers (Tomsk, 2011), p. 26.

  40. 40

    A. M. Boichenko, G. S. Evtushenko, O. V. Zhdaneev, and S. I. Yakovlenko, “Theoretical analysis of the mechanisms of influence of hydrogen additions on the emission parameters of a copper vapour laser,” Quantum Electron. 3 (12), 1047–1058 (2003).

    Article  ADS  Google Scholar 

  41. 41

    A. M. Boichenko, G. S. Evtushenko, O. V. Zhdaneev, and S. I. Yakovlenko, Preprint No. 5 (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 2003), p. 1–20.

  42. 42

    O. V. Zhdaneev, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 2004).

  43. 43

    A. M. Boychenko, G. S. Evtushenko, V. O. Nekhoroshev, D. V. Shiyanov, and S. N. Torgaev, “CuBr-Ne-HBr laser with a high repetition frequency of the lasing pulses at a reduced energy deposition in the discharge,” Phys. Wave Phenom. 23 (1), 1–13 (2015).

    Article  ADS  Google Scholar 

  44. 44

    G. S. Evtushenko, S. N. Torgaev, M. V. Trigub, D. V. Shiyanov, T. G. Evtushenko, and A. E. Kulagin, “High-speed CuBr brightness amplifier beam profile,” Opt. Commun. 383, 148–152 (2017).

    Article  ADS  Google Scholar 

  45. 45

    S. N. Torgaev, A. E. Kulagin, T. G. Evtushenko, and G. S. Evtushenko, “Kinetic modeling of spatio-temporal evolution of the gain in copper vapor active media,” Opt. Commun. 440, 146–149 (2019).

    Article  ADS  Google Scholar 

  46. 46

    V. M. Klimkin, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 2004).

  47. 47

    V. M. Klimkin, V. E. Prokop’ev, and V. G. Sokovikov, “An experimental study of the correlation between ion and atomic spectra of Eu in the He-Eu mixture,” Atmo-s. Ocean. Opt. 6 (6), 628–634 (1993).

    Google Scholar 

  48. 48

    V. M. Klimkin and V. G. Sokovikov, “Beitler lasers,” Atmos. Ocean. Opt. 10 (11), 816–821 (1997).

    Google Scholar 

  49. 49

    V. M. Klimkin, V. E. Prokop’ev, and V. G. Sokovikov, “Investigation of the dependence of the output power of a laser utilizing infrared ytterbium lines on the pump pulse repetition frequency,” Quantum Electron. 11 (4), 437 (1982).

    ADS  Google Scholar 

  50. 50

    V. G. Sokovikov, V. M. Klimkin, D. Yu. Shestakov, and L. P. Vorob’eva, “Asymmetry of optical excitation of a copper atom resonance doublet,” Atmos. Ocean. Opt. 21 (11), 878–884 (2008).

    Google Scholar 

  51. 51

    V. M. Klimkin and V. G. Sokovikov, “Experimental study of the refractive index of mercury vapor at atmosphere pressure and λ = 308 nm,” J. Opt. Technol. 74 (6), 428–431 (2007).

  52. 52

    V. G. Sokovikov, Doctoral Dissertation in Mathematics and Physics (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, 2013).

  53. 53

    V. G. Sokovikov and V. M. Klimkin, “Stimulated Raman scattering of XeF* and KrF laser radiation in samarium and europium vapors,” Atmos. Oceanic Opt. 27 (5), 447–453 (2014).

    Article  Google Scholar 

  54. 54

    V. G. Sokovikov, V. E. Prokop’ev, and A. V. Klimkin, “Atomic lines of amplified spontaneous emission during optical pumping of Yb by KrF* laser radiation,” Atmos. Ocean. Opt. 31 (4), 419–423 (2018).

    Article  Google Scholar 

  55. 55

    V. M. Klimkin and V. G. Sokovikov, “Laser effects at resonant optical excitation of aluminum vapor,” Atmos. Ocean. Opt. 19 (2-3), 229–231 (2006).

    Google Scholar 

  56. 56

    V. M. Klimkin, V. N. Nikolaev, V. G. Sokovikov, and V. B. Shcheglov, ““Emission in transitions to the ground and metastable states of Ba+ during two-photon ionization of barium vapor by a XeCI* laser beam,” JETP Lett. 34 (3), 105–107 (1981).

    ADS  Google Scholar 

  57. 57

    V. G. Sokovikov, V. M. Klimkin, and V. E. Prokop’ev, “Optical-pumping lasing of stimulated emission by transitions to ground and metastable states of Eu ion,” Opt. Atmos. Okeana 23 (5), 359–363 (2010).

    Article  Google Scholar 

  58. 58

    Trudy FIAN.Vol. 206. Optical Systems with Brightness Amplifiers, Ed. by G.G. Petrasha (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  59. 59

    K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, and G. G. Petrash, “Laser projection microscope,” Sov. J. Quantum Electron. 4 (1), 5 (1974).

    Article  ADS  Google Scholar 

  60. 60

    G. S. Evtushenko, “From a metal vapor laser projection microscope to a laser monitor (by the 50 year-anniversary of metal vapor lasers),” Proc. SPIE—Int. Soc. Opt. Eng. 9810, 98101 (2015).

  61. 61

    F. A. Gubarev, V. O. Troitsky, M. V. Trigub, and V. B.  Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284 (10–11), 2565–2568 (2011).

    Article  ADS  Google Scholar 

  62. 62

    M. V. Trigub and G. S. Evtushenko, High-Speed Laser Monitor for Nondestructive Inspection (Lap Lampbert Academic Publishing, 2015).

    Google Scholar 

  63. 63

    G. S. Evtushenko, M. A. Kazaryan, S. N. Torgaev, M. V. Trigub, and D. V. Shiyanov, High-Speed Brightness Amplifiers Based on Induced Transitions in Metal Vapors (STT, Tomsk, 2016), is. 1 [in Russian].

  64. 64

    M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).

    Article  ADS  Google Scholar 

  65. 65

    M. V. Trigub, D. V. Shiyanov, V. B. Sukhanov, and G. S. Evtushenko, “MnBr Vapor active medium with a built-in reactor at 100-kHz pulse repetition frequency,” Atmos. Ocean. Opt. 27 (4), 458–462 (2014).

    Article  Google Scholar 

  66. 66

    M. V. Trigub, K. V. Fedorov, and G. S. Evtushenko, “Remote object visualization using a laser monitor with a typical pulse duration of CuBr brightness amplifier,” Opt. Atmos. Okeana 28 (9), 850–853 (2015).

    Google Scholar 

  67. 67

    M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, V. O. Troitskii, and D. V. Shiyanov, “Bistatic laser monitor,” Pis’ma Zh. Tech. Fiz. 42 (12), 51–56 (2016).

    Google Scholar 

  68. 68

    N. A. Vasnev, M. V. Trigub, V. A. Dimaki, G. S. Evtushenko, V. O. Troitskii, and V. V. Vlasov, RF Patent No. 185671, Byull. Izobret., No. 35 (2018).

  69. 69

    M. V. Trigub, N. A. Vasnev, G. S. Evtushenko, and V. A. Dimaki, “A synchronization system for the pulse-periodic operating mode of active media on self-terminating transitions in metal vapors,” Instr. Exp. Tech., No. 1, 28–32 (2019).

  70. 70

    N. A. Vasnev, M. V. Trigub, and G. S. Evtushenko, “Features of operation of a brightness amplifier on copper bromide vapors in the bistatic scheme of a laser monitor,” Atmos. Ocean. Opt. 32 (4), 483 (2019).

    Article  Google Scholar 

  71. 71

    M. V. Trigub, V. V. Vlasov, S. N. Torgaev, and G. S. Evtushenko, “An image-brightness amplifier based on copper bromide vapor for operation at increased superradiance pulse duration,” JTP Lett. 43 (9), 828–830 (2017).

    Google Scholar 

  72. 72

    G. S. Evtushenko, M. V. Trigub, F. A. Gubarev, T. G. Evtushenko, S. N. Torgaev, and D. V. Shiyanov, “Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting,” Rev. Sci. Instrum. 85, 1–5 (2014).

    Article  Google Scholar 

  73. 73

    G. S. Evtushenko, Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes (Nova Science Publishers Inc., 2018).

    Google Scholar 

  74. 74

    M. V. Trigub, V. V. Platonov, V. V. Osipov, T. G. Evtushenko, and G. S. Evtushenko, “Laser monitors for high speed imaging of materials modification and production,” Vacuum 143, 486–490 (2017).

    Article  ADS  Google Scholar 

  75. 75

    D. V. Beloplotov, M. V. Trigub, V. F. Tarasenko, G. S. Evtushenko, and M. I. Lomaev, “Laser monitor visualization of gas-dynamic processes under pulse-periodic discharges initiated by runaway electrons in atmospheric pressure air,” Atmos. Ocean. Opt. 29 (4), 371–375 (2016).

    Article  Google Scholar 

  76. 76

    M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Oceanic Opt. 29 (4), 376–380 (2016).

    Article  Google Scholar 

  77. 77

    M. V. Trigub, M. V. Burkov, P. S. Lyubutin, and S. N. Torgaev, “Investigation of distortions of images formed by a CuBr laser monitor,” Opt. Atmos. Ok-eana 29 (10), 850–854 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express deep gratitude to all colleagues who took and are taking part in the scientific activities of the QE department/laboratory in different periods, and whose contribution to the solution of numerous problems connected with the development of MVLs and systems on their basis is difficult to be overestimated.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. V. Trigub or V. O. Troitskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dimaki, V.A., Sokovikov, V.G., Torgaev, S.N. et al. Metal Vapor Lasers. Atmos Ocean Opt 33, 69–79 (2020). https://doi.org/10.1134/S1024856020010066

Download citation

Keywords:

  • metal vapor lasers
  • metal halides
  • laser efficiency
  • active thermal insulation
  • active impurity generator
  • inner reactor
  • optical pumping
  • brightness amplifier
  • active optical systems