Skip to main content

Lidar Methods and Tools for Studying the Atmospheric Turbulence at the Institute of Atmospheric Optics

Abstract

Main results of works carried out during last five years at the Institute of Atmospheric Optics on the creation of lidar methods and tools for studying atmospheric turbulence are surveyed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31 (1), 4–15 (1993).

    Article  ADS  Google Scholar 

  2. 2

    J.-P. Cariou, L. Thobois, and P. Spenser, “From Windcube #0001 to Windbube#1000: Doppler lidar as a mature technology,” in Proc. of the 19th Coherent Laser Radar Conf., June 18–21,2018, Okinawa, Japan (CIRES, 2018), p. 404–407.

  3. 3

    M. Andreev, D. Vasil’ev, M. Penkin, S. Smolentsev, A. Boreisho, D. Klochkov, M. Konyaev, A. Orlov, and A. Chugreev, “Coherent Doppler lidars for wind monitoring,” Fotonika, No. 6/48, 20–28 (2014).

    Google Scholar 

  4. 4

    R. J. Hogan, A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, “Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar,” Q. J. Roy. Meteorol. Soc. 135 (4), 635–643 (2009).

    Article  ADS  Google Scholar 

  5. 5

    J. F. Barlow, T. M. Dunbar, E. G. Nemitz, C. R. Wood, M. W. Gallagher, F. Davies, E. O’Connor, and R. M. Harrison, “Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II,” Atmos. Chem. Phys. 11 (3), 2111–2125 (2011).

    Article  ADS  Google Scholar 

  6. 6

    M. Huang, Z. Gao, S. Miao, F. Chen, M. A. Lemone, J. Li, F. Hu, and L. Wang, “Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015,” Bound.-Lay. Meteorol. 162 (9), 503–522 (2017).

    Article  ADS  Google Scholar 

  7. 7

    Y. L. Pichugina and R. M. Banta, “Stable boundary layer depth from high-resolution measurements of the mean wind profile,” J. Appl. Meteorol. Climatol. 49 (1), 20–35 (2010).

    Article  ADS  Google Scholar 

  8. 8

    T. A. Bonin, B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B. Shepson, “Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach,” J. Atmos. Ocean. Technol. 35 (3), 915–935 (2018).

    Article  Google Scholar 

  9. 9

    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in a Turbulent Atmosphere (Artech House, Boston, London, 2013).

    Google Scholar 

  10. 10

    A. Sathe and J. Mann, “A review of turbulence measurements using ground-based wind lidars,” Atmos. Meas. Tech 6, 3147–3167 (2013).

    Article  Google Scholar 

  11. 11

    F. C. Fuertes, G. V. Iungo, and F. Porte-Agel, “3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry,” J. Atmos. Ocean. Technol 31, 1549–1556 (2014).

    Article  ADS  Google Scholar 

  12. 12

    A. Sathe, J. Mann, N. Vasiljevic, and G. Lea, “A six-beam method to measure turbulence statistics using ground-based wind lidars,” Atmos. Meas. Tech. 8, 729–740 (2015).

    Article  Google Scholar 

  13. 13

    I. N. Smalikho and V. A. Banakh, “Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer,” Atmos. Meas. Tech. 10, 4191–4208 (2017).

    Article  Google Scholar 

  14. 14

    V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar,” Opt. Express 25 (19), 22 679–22 692 (2017).

    Article  Google Scholar 

  15. 15

    T. A. Bonin, A. Choukulkar, W. A. Brewer, S. P. Sandberg, A. M. Weickmann, Y. Pichugina, R. M. Banta, S. P. Oncley, and D. E. Wolfe, “Evaluation of turbulence measurement techniques from a single Doppler lidar,” Atmos. Meas. Tech. 10, 3021–3039 (2017).

    Article  Google Scholar 

  16. 16

    J. F. Newman and A. Clifton, “An error reduction algorithm to improve lidar turbulence estimates for wind energy,” Wind Energ. Sci. 2, 77–95 (2017).

    Article  Google Scholar 

  17. 17

    V. A. Banakh and I. N. Smalikho, “Lidar studies of wind turbulence in the stable atmospheric boundary layer,” Remote Sens. 10, 1219 (2018).

    Article  ADS  Google Scholar 

  18. 18

    N. Bodini, J. K. Lundquist, and R. K. Newsom, “Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign,” Atmos. Meas. Tech. 11, 4291–4308 (2018).

    Article  Google Scholar 

  19. 19

    I. N. Smalikho and V. A. Banakh, “Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing,” Atmos. Ocean. Opt. 26 (5), 404–410 (2013).

    Article  Google Scholar 

  20. 20

    I. N. Smalikho, V. A. Banakh, A. V. Falits, and Yu. A. Rudi, “Determination of the turbulent energy dissipation rate from data measured by a “Stream Line” lidar in the atmospheric surface layer,” Opt. Atmos. Okeana 28 (10), 901–905 (2015).

    Google Scholar 

  21. 21

    V. A. Banakh and I. N. Smalikho, “Wind sensing in an atmospheric boundary layer by means of micropulse coherent Doppler lidars,” Opt. Spectrosc. 121 (1), 152–159 (2016).

    Article  ADS  Google Scholar 

  22. 22

    I. N. Smalikho, V. A. Banakh, and A. V. Falits, “Lidar measurements of wind turbulence parameters in the atmospheric boundary layer,” Opt. Atmos. Okeana 30 (4), 342–349 (2017).

    Article  Google Scholar 

  23. 23

    I. N. Smalikho, V. A. Banakh, and A. V. Falits, “Lidar investigation of wind turbulence in the presence of low-level jet in the atmosphere,” Opt. Atmos. Okeana 31 (9), 716–724 (2018).

    Google Scholar 

  24. 24

    A. Stephan, N. Wildmann, and I. N. Smalikho, “Measurements of wind turbulence parameters by a Windcube 200s lidar in the atmospheric boundary layer,” Opt. Atmos. Okeana 31 (10), 815–820 (2018).

    Google Scholar 

  25. 25

    V. A. Banakh, A. I. Nadeev, I. A. Razenkov, I. N. Smalikho, A. V. Falits, and A. M. Sherstobitov, “Test results for the pulsed coherent Doppler lidar designed at IAO SB RAS,” in Abstr. XXV International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics,” July 1–5, 2019, Novosibirsk, Russia (Publishing House of IAO SB ARS, 2019) [in Russian].

  26. 26

    M. S. Belen’kii, V. V. Boronoev, N. Ts. Gomboev, and V. L. Mironov, Optical Sounding of Atmospheric Turbulence (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  27. 27

    A. Zilbermen and N. S. Kopeika, “Lidar measurements of atmospheric turbulence profiles,” in Proc. SPIE 5338, 288–297 (2004).

    Article  ADS  Google Scholar 

  28. 28

    A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv. Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  29. 29

    A. S. Gurvich, RF Patent no. 116245, Byull. Izobret., No. 14 (2012).

  30. 30

    A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “Backscatter amplification on bodies placed in a medium with random inhomogeneities,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 16 (7), 1064–1070 (1973).

    Google Scholar 

  31. 31

    V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Laser echo signal amplification in a turbulent atmosphere,” Appl. Opt. 54 (24), 7301–7307 (2015).

    Article  ADS  Google Scholar 

  32. 32

    V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part I. Computer simulation,” Opt. Atmos. Okeana 28 (1), 5–11 (2015).

    Google Scholar 

  33. 33

    V. A. Banakh and I. A. Razenkov, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part II. Construction and experiment,” Opt. Atmos. Okeana 28 (2), 113–119 (2015).

    Google Scholar 

  34. 34

    P. Vrancken, M. Wirth, G. Ehret, H. Barny, P. Rondeau, and H. Veerman, “Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: System design and performance,” Appl. Opt. 55 (32), 9314–9328 (2016).

    Article  ADS  Google Scholar 

  35. 35

    A. Hauchecorne, Ch. Cot, F. Dalaudier, J. Porteneuve, T. Gaudo, R. Wilson, C. Cenac, Ch. Laqui, P. Keckhut, J.-M. Perrin, A. Dolfi, N. Cezard, L. Lombard, and C. Besson, “Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar,” Appl. Opt. 55 (13), 3420–3428 (2016).

    Article  ADS  Google Scholar 

  36. 36

    A. N. Kolmogorov, “Local turbulence structure in uncompressible viscous liquid under very high Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299–303 (1941).

    ADS  Google Scholar 

  37. 37

    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics. Part 2 (Nauka, Moscow, 1967) [in Russian].

  38. 38

    N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  39. 39

    J. Lamley and H. Panofsky, The Structure of Atmospheric Turbulence (John Wiley & Sons, 1964).

    Google Scholar 

  40. 40

    R. M. Banta, R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, “Nocturnal low-level jet characteristics over Kansas during CASES-99,” Bound.-Lay. Meteorol. 105, 221–252 (2002).

    Article  ADS  Google Scholar 

  41. 41

    R. M. Banta, Y. L. Pichugina, and W. A. Brewer, “Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet,” J. Atmos. Sci. 63, 2700–2719 (2006).

    Article  ADS  Google Scholar 

  42. 42

    R. M. Banta, Y. L. Pichugina, and R. K. Newsom, “Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer,” J. Atmos. Sci. 60, 2549–2555 (2003).

    Article  ADS  Google Scholar 

  43. 43

    R. K. Newsom and R. M. Banta, “Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99,” J. Atmos. Sci. 60 (1), 16–33 (2003).

    Article  ADS  Google Scholar 

  44. 44

    Y. L. Pichugina, R. M. Banta, N. D. Kelley, and W. A. Brewer, “Nocturnal boundary layer height estimate from Doppler lidar measurements,” in Proc. 18th Symp. on Bound.-Lay. and Turbulence, June2008, Stockholm, Sweden.

  45. 45

    W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6, 809–819 (1989).

    Article  ADS  Google Scholar 

  46. 46

    T. Von Karman, “Progress in the statistical theory of turbulence,” Proc. Nat. Acad. Sci. U.S.A. 34 (11), 530–539 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. 47

    N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  48. 48

    V. A. Banakh and I. N. Smalikho, “Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer based on measurements of wind radial velocity by a micropulsed coherent Doppler lidar. I. Numerical analysis,” Opt. Atmos. Okeana 30 (8), 631–637 (2017).

    Google Scholar 

  49. 49

    V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer based on measurements of wind radial velocity by a micropulsed coherent Doppler lidar. II. Experiment,” Opt. Atmos. Okeana 30 (8), 638–643 (2017).

    Google Scholar 

  50. 50

    V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9 (10), 5239–5248 (2016).

    Article  Google Scholar 

  51. 51

    G. N. Pearson, J. Facock, and F. Olsson, “A 1.5 mkm coherent pulsed Doppler lidar using fibre-optics components,” in Proc. 11th Coherent Laser Radar Conf., 1–6 July2001, Malvern, Worcestershire. P. 144–146.

  52. 52

    G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Tech. 26 (2), 240–250 (2009).

    Article  Google Scholar 

  53. 53

    V. A. Banakh and I. A. Razenkov, “Refractive turbulence strength estimation based on the laser echo signal amplification effect,” Opt. Lett. 41 (19), 4429–4432 (2016).

    Article  ADS  Google Scholar 

  54. 54

    V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    Article  ADS  Google Scholar 

  55. 55

    V. A. Banakh and V. L. Mironov, Radar Propagation of Laser Radiation through a Turbulent Atmosphere (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  56. 56

    I. N. Smalikho, “Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation,” Atmos. Ocean. Opt. 26 (2), 135–139 (2013).

    Article  Google Scholar 

  57. 57

    V. A. Banakh, “Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (2), 90–95 (2013).

    Article  Google Scholar 

  58. 58

    V. A. Banakh, A. V. Falits, and I. V. Zaloznaya, “Effect of spatial restriction of a laser beam on backscatter amplification in a turbulent atmosphere,” in Abstr. XXV International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics,” July 1–5, 2019, Novosibirsk, Russia (Publishing House of IAO SB ARS, 2019) [in Russian].

  59. 59

    V. A. Banakh, L. O. Gerasimova, I. V. Zaloznaya, and A. V. Falits, “Lidar signal amplification in a turbulent atmosphere under strong optical scintillations,” Atmos. Oceanic Opt. 32 (1), 1–7 (2019).

    Article  Google Scholar 

  60. 60

    V. A. Banakh and A. V. Falits, “Numerical analysis of the backscatter amplification manifestation versus optical turbulence strength,” in Abstr. XXV International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics,” July 1–5, 2019, Novosibirsk, Russia (Publishing House of IAO SB ARS, 2019) [in Russian].

Download references

ACKNOWLEDGMENTS

We are very grateful to colleagues of the Laboratory of Wave Propagation E.V. Gordeev, V.V. Kuskov, V.V. Reino, A.A. Sukharev, and A.N. Shesternin who took an active part in all the experiments. Finally, these works simply would not be accomplished without the high-caliber team of researchers—without exaggeration, world-class specialists—I.N. Smalikho, I.A. Razenkov, and A.V. Falits.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Banakh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banakh, V.A. Lidar Methods and Tools for Studying the Atmospheric Turbulence at the Institute of Atmospheric Optics. Atmos Ocean Opt 33, 1–9 (2020). https://doi.org/10.1134/S1024856020010042

Download citation

Keywords:

  • wind Doppler lidar
  • lidar for measuring the optical turbulence intensity