Skip to main content

Control of Multiple Filamentation of Femtosecond Laser Pulses in Air

Abstract

The results are presented of experiments on controlling the characteristics of the multiple filamentation domain of femtosecond laser pulses along atmospheric paths via variations in the initial spatial focusing, beam radius, and pulse energy, as well as the optical field structure at the initial beam aperture.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugzlys, E. A. Stepanov, G. Andriukaitis, T. Flory, S. Alisauskas, A. B. Fedotov, A. Baltuska, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368–8373 (2015).

    ADS  Article  Google Scholar 

  2. 2

    L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.‑P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).

    ADS  Article  Google Scholar 

  3. 3

    J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, “White-light filaments for atmospheric analysis,” Science 301 (7), 61–64 (2003).

    ADS  Article  Google Scholar 

  4. 4

    A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).

    ADS  Article  Google Scholar 

  5. 5

    S. L. Chin, H. L. Xu, Q. Luo, F. Theberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Mejean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Akozbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Chateauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95 (1), 1–12 (2009).

    ADS  Article  Google Scholar 

  6. 6

    A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugzlys, G. Andriukaitis, T. Flory, E. A. Stepanov, A. B. Fedotov, A. Baltuska, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40 (9), 2068–2071 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Yu. E. Geints, A. A. Ionin, D. V. Mokrousova, G. E. Rizaev, L. V. Seleznev, E. S. Sunchugasheva, and A. A. Zemlyanov, “Energy, spectral, and angular properties of post-filamentation channels during propagation in air and condensed media,” J. Opt. Soc. Am. B 36 (10), G19–G24 (2019).

    Article  Google Scholar 

  8. 8

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Global self-focusing and features of multiple filamentation of radiation of a subterawatt Ti:Sapphire laser with a centimeter output aperture along a 150-m path,” Atmos. Ocean. Opt. 31 (1), 31–35 (2018).

    Article  Google Scholar 

  9. 9

    Yu. E. Geints, D. V. Apeksimov, and A. V. Afonasenko, Certificate of RF State Registration of Software No. 2 014 616 871 of July 7, 2014.

  10. 10

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Localized high-intensity light structures during multiple filamentation of Ti:Sapphire laser femtosecond pulses along an air path,” Atmos. Ocean. Opt. 31 (2), 107–111 (2018).

    Article  Google Scholar 

  11. 11

    Self-focusing: Past and Present. Fundamentals and Prospects, Ed. by R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009).

    Google Scholar 

  12. 12

    D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).

    Article  Google Scholar 

  13. 13

    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and A. N. Stepanov, “Experimental study of filamentation of high-power ultrashort laser pulses with initial angular divergence in air,” Quantum Electron. 43 (4), 350–355 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Yu. E. Geints, A. A. Zemlyanov, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva, “Peculiarities of filamentation of sharply focused ultrashort laser pulses in air,” JETP 138 (5), 822–829 (2010).

    Google Scholar 

  15. 15

    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Light self-focusing and diffraction in a nonlinear medium,” Uspekhi Fiz. Nauk 93 (9), 19–70 (1967).

    Article  Google Scholar 

  16. 16

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Multiple filamentation of laser beams of different diameters in air along a 150-meter path,” Atmos. Ocean. Opt. 29 (3), 263–266 (2016).

    Article  Google Scholar 

  17. 17

    Yu. E. Geints and A. A. Zemlyanov, “Numerical simulations of dark hollow laser beams self-focusing and filamentation in air,” Opt. Atmos. Okeana 26 (8), 647–653 (2013).

    Google Scholar 

  18. 18

    T. D. Grow, A. A. Ishaaya, L. T. Vuong, and A. L. Gaeta, “Collapse dynamics of super-Gaussian beams,” Opt. Express 14 (12), 5468–5475 (2006).

    ADS  Article  Google Scholar 

  19. 19

    D. E. Roskey, M. Kolesik, J. V. Moloney, and E. M. Wright, “Self-action and regularized self-guiding of pulsed Bessel-like beams in air,” Opt. Express 15 (16), 9893–9907 (2007).

    ADS  Article  Google Scholar 

  20. 20

    V. O. Kompanets, S. V. Chekalin, O. G. Kosareva, A. V. Grigor’evskii, and V. P. Kandidov, “Conical emission of a femtosecond laser pulse focused by an axicon into a K 108 glass,” Quantum Elektron. 36 (9), 821–824 (2006).

    ADS  Article  Google Scholar 

  21. 21

    P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622–2628 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wan, “Laser filamentation in air via Mathieu modulation: ranging from trajectory-predesigned curved filament to quasi-soliton and ring light bullet,” J. Mod. Opt. 64, 572–580 (2017).

    ADS  Article  Google Scholar 

  23. 23

    M. Mills, D. Christodoulides, and M. Kolesik, “Dressed optical filaments,” Opt. Lett. 38, 25–27 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Yu. E. Geints and A. A. Zemlyanov, “Regularities of femtosecond filamentation in the case of superposition of Gaussian and annular laser beams,” Quantum Electron. 47 (8), 722–729 (2017).

    ADS  Article  Google Scholar 

  25. 25

    M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604–08 (2004).

    ADS  Article  Google Scholar 

  26. 26

    A. Couairon, E. Brambilla, T. Corti, D. Majus, O. Ramirez-Gongora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Special Top. 199, 5–76 (2011).

    ADS  Article  Google Scholar 

  27. 27

    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” JETP 24 (1), 207 (1966).

    ADS  Google Scholar 

  28. 28

    A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, “Dynamics of light structures during filamentation of femtosecond laser pulses in air,” Atmos. Ocean. Opt. 29 (5), 395–403 (2016).

    Article  Google Scholar 

  29. 29

    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1970).

    MATH  Google Scholar 

  30. 30

    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlynov, A. M. Kabanov, V. K. Oshlakov, A. V. Petrov, and G. G. Matvienko, “Controlling TW-laser pulse long-range filamentation in air by a deformable mirror,” A-ppl. Opt. 57 (34), 9760–9769 (2018).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Zemlyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apeksimov, D.V., Geints, Y.E., Zemlyanov, A.A. et al. Control of Multiple Filamentation of Femtosecond Laser Pulses in Air. Atmos Ocean Opt 33, 42–50 (2020). https://doi.org/10.1134/S1024856020010030

Download citation

Keywords:

  • laser radiation
  • femtosecond pulse
  • self-focusing
  • filamentation
  • postfilamentation light channel
  • bimorph deformable mirror