Skip to main content
Log in

Laboratory Simulation of Blue Jets with Apokampic Discharge in the Hz Frequency Range

  • OPTICAL SOURCES AND RECEIVERS FOR ENVIRONMENTAL STUDIES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

It is shown that the channel of apokampic discharge is a source of streamers at low air pressure and low frequencies (7–16 Hz) of high-voltage positive-polarity pulses and voltage amplitudes from 26 to 35 kV. The maximal starting speed of laboratory streamers was 560 km/s. A hypothesis about blue jet origination in nature is suggested based on experimental data. For their start, high frequencies of voltage pulses are not required, breakdowns in the Hz range are sufficient, but the discharge channel should bend and the field intensity should be high at the bending point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. D. Sentman and E. M. Wescott, “Observations of upper atmospheric optical flashes recorded from an aircraft,” Geophys. Rev. Lett. 20 (24), 2857–2860 (1993).

    Article  ADS  Google Scholar 

  2. P. R. Krehbiel, J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens, “Upward electrical discharges from thunderstorms,” Nat. Geosci. 1 (4), 233–237 (2008).

    Article  ADS  Google Scholar 

  3. O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, “Profuse activity of blue electrical discharges at the tops of thunderstorms,” Geophys. Rev. Lett. 44 (1), 496–503 (2017).

    Article  ADS  Google Scholar 

  4. N.Y. Liu, V. P. Pasko, K. Adams, H. C. Stenbaek-Nielsen, and M. G. McHarg, “Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations,” J. Geophys. Res. 114 (A3), E03 (2009).

    Article  Google Scholar 

  5. T. Suzuki, M. Hayakawa, Y. Hobara, and K. Kusunoki, “First detection of summer blue jets and starters over Northern Kanto area of Japan: Lightning activity,” J. Geophys. Res. A 117 (7), A07307 (2012).

    ADS  Google Scholar 

  6. V. A. Sadovnichii, M. I. Panasyuk, A. M. Amelyushkin, et al., “"Lomonosov” satellite-space observatory to study extreme phenomena in space," Space Sci. Rev. 212 (3-4), 1705‒1738 (2017).

    Article  ADS  Google Scholar 

  7. E. V. Mishin and G. M. Milikh, “Blue jets: Upward Lightning,” Space Sci. Rev. 137 (4), 473–488 (2008).

    Article  ADS  Google Scholar 

  8. V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].

    Google Scholar 

  9. D. Siingh, R. P. Singh, S. Kumar, T. Dharmaraj, A. K. Singh, M. N. Patil, and Sh. Singh, “Lightning and middle atmospheric discharges in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 134 (11), 78–101 (2015).

    Article  ADS  Google Scholar 

  10. E. R. Williams, “Sprites, elves, and glow discharge tubes,” Phys. Today 54 (11), 41 (2001).

    Article  Google Scholar 

  11. S. Pancheshnyi, M. Nudnova, and A. Starikovskii, “Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation,” Phys. Rev. E 71 (1), 016407 (2005).

    Article  ADS  Google Scholar 

  12. A. V. Strikovskii, A. A. Evtushenko, M. E. Gushchin, S. V. Korobkov, and A. V. Kostrov, “Pulsed high-voltage discharge in air with a pressure gradient,” Olasma Phys. Rep. 43 (10), 866–873 (2017).

    Google Scholar 

  13. V. F. Tarasenko, D. V. Beloplotov, M. I. Lomaev, and D. A. Sorokin, “Laboratory observation of mini sprites and blue jets in discharges initiated by runaway electrons,” Opt. Atmos. Okeana 27 (11), 1017–1019 (2014).

    Google Scholar 

  14. A. Robledo-Martinez, H. Sobral, and A. Ruiz-Meza, “Electrical discharges as a possible source of methane on mars: lab simulation,” Geophys. Rev. Lett. 39 (17), L17202 (2012).

  15. E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Blue jets and starters laboratory modelling by underpressure apokamp,” Opt. Atmos. Okeana 29 (10), 855–868 (2016).

    Google Scholar 

  16. V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana 30 (3), 243–253 (2017).

    Article  Google Scholar 

  17. E. A. Sosnin, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Ministarters and mini blue jets in air and nitrogen at a pulse-periodic discharge in a laboratory experiment,” JETP Lett. 105 (10), 641–645 (2017).

    Article  ADS  Google Scholar 

  18. V. S. Kuznetsov, E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “The influence of molecular gas on the apokamp discharge formation,” Opt. Spectrosc. 125 (3), 324–330 (2018).

    Article  ADS  Google Scholar 

  19. E. A. Sosnin, G. V. Naidis, V. S. Tarasenko, V. S. Skakun, V. A. Panarin, N. A. Babaeva, E. Kh. Baksht, and V. S. Kuznetsov, “Apokamps produced by repetitive discharges in air,” Phys. Plasmas 25 (8), 083513 (2018).

    Article  ADS  Google Scholar 

  20. V. S. Skakun, V. A. Panarin, V. F. Tarasenko, and V. S. Kuznetsov, “The influence of frequency and voltage to apokamp discharge dynamics at moderate pressures,” in Proc. of the 20th Int. Symp. on High-Current Electronics (ISHCE). 16–22 September,2018. Tomsk (TPU, Tomsk, 2018), p. 176–178.

  21. E. A. Sosnin, V. A. Panarin, V. S. Skakun, E. Kh. Baksht, and V. F. Tarasenko, “Dynamics of apokamp-type atmospheric pressure plasma jets,” Eur. Phys. J. D 71 (2), 25 (2017).

    Article  ADS  Google Scholar 

  22. E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, V. S. Skakun, V. A. Panarin, and N. Yu. Babaeva, “On the physical nature of apokampic discharge,” JETP 125 (5), 920–925 (2017).

    Article  ADS  Google Scholar 

  23. X. Lu, M. Laroussi, and V. Puech, “On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Sources Sci. Technol. 21 (3), 034005 (2012).

    Article  ADS  Google Scholar 

  24. T. Neubert, M. Rycroft, T. Farges, E. Blanc, O. Chanrion, E. Arnone, A. Odzimek, N. Arnold, C.-F. Enell, E. Turunen, N. Bosinger, A. Mika, C. Haldoupis, R. J. Steiner, O. van der Velde, S. Soula, P. Berg, F. Boberg, P. Thejll, B. Christiansen, M. Ignaccolo, M. Fullekrug, P. T. Verronen, J. Montanya, and N. Crosby, “Recent results from studies of electric discharges in the mesosphere,” Surv. Geophys. 29 (2), 71–137 (2008).

    Article  ADS  Google Scholar 

  25. G. V. Naidis, “Positive and negative streamers in air: Velocity-diameter relation,” Phys. Rev. E 79 (5), 057401 (2009).

    Article  ADS  Google Scholar 

  26. V. I. Ermakov and Yu. I. Stozhkov, Preprint no. 2 (Lebedev Physical Institute, Russian Academy of Sciences, 2004).

    Google Scholar 

  27. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, Great Britain, 1964).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.G. Russkikh and D.S. Pechenitsyn for their help.

Funding

The work was performed within the State Assignment for IHCE SB RAS (theme no. 13.1.4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Sosnin or V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnin, E.A., Baksht, E.K., Kuznetsov, V.S. et al. Laboratory Simulation of Blue Jets with Apokampic Discharge in the Hz Frequency Range. Atmos Ocean Opt 32, 710–715 (2019). https://doi.org/10.1134/S1024856019060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019060162

Keywords:

Navigation