Skip to main content
Log in

Trends in Atmospheric Aerosol Characteristics in Moscow Derived from Multiyear AERONET Measurements

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We estimated the trends of aerosol optical depth (AOD) in Moscow over 2002–2016 using ground-based AERONET measurements. Negative AOD trends were found. It is shown that AOD trends differ depending on month; the most negative trend is observed in April if neglecting the effect of forest fires. Variations in AOD and atmospheric circulation indices are jointly analyzed. It is shown that Scandinavian index has an additional effect on interannual AOD variations in April. The predominant aerosol type (recorded in more than 60% of observations) for the territory of Moscow is fine-fraction weakly absorbing aerosol. No directional changes in aerosol types have been observed in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Yoon, W. V. Hoyningen-Huene, M. Vountas, and J. P. Burrows, “Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China,” Atmos. Chem. Phys. 11 (23), 12 149–12 167 (2011).

    Article  Google Scholar 

  2. J. Li, B. E. Carlson, O. Dubovik, and A. A. Lacis, “Recent trends in aerosol optical properties derived from AERONET measurements,” Atmos. Chem. Phys. 14 (22), 12271–12289 (2014).

    Article  ADS  Google Scholar 

  3. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, G. I. Kornienko, B. Holben, and A. Smirnov, “Atmospheric aerosol optical depth in Far East Primorye according to data of satellite and ground-based observations,” Opt. Atmos. Okeana 24 (8), 654–660 (2011).

    Google Scholar 

  4. S. Yu. Andreev, S. V. Afonin, and S. A. Bedareva, S. A. Beresnev, O. A. Bukin, and L. P. Golobokova, E. V. Gorbarenko, S. Yu. Gorda, K. G. Gribanov, T. A. Eremina, G. S. Zhamsueva, T. B. Zhuravleva, V. I. Zakharov, A. S. Zayakhanov, D. M. Kabanov, V. S. Kozlov, and G. I. Kornienko, N. Ya. Lomakina, A. P. Luzhetskaya, A. Yu. Maior, Yu. I. Markelov, E. S. Nagovitsyna, S. A. Naguslaev, I. M. Nasrtdinov, O. G. Netsvetaeva, S. V. Nikolashkin, V. A. Obolkin, N. A. Onishchuk, A. N. Pavlov, M. V. Panchenko, V. A. Poddubnyi, V. V. Pol’kin, V. L. Potemkin, T. M. Rasskazchikova, N. V. Rokotyan, A. P. Rostov, S. M. Sakerin, P. A. Salyuk, A. V. Smirnov, T. K. Sklyadneva, S. Yu. Stolyarchuk, M. A. Tashchilin, S. A. Terpugova, Yu. S. Turchinovich, S. A. Turchinovich, U. G. Filippova, T. V. Khodzher, B. N. Kholben, V. V. Tsydypov, T. Yu. Chesnokova, V. P. Shmargunov, K. A. Shmirko, and M. V. Engel’, Study of Radiative Parameters of Aerosol in Russian Arctic, Ed. by S. M. Sakerin (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  5. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, V. A. Poddubnyi, and A. P. Luzhetskaya, “Spatiotemporal variations in the atmospheric aerosol optical depth on the territory of Povolzhye, Urals, and Western Siberia,” Opt. Atmos. Okeana. 25 (11), 958–962 (2012).

    Google Scholar 

  6. E. V. Gorbarenko and A. N. Rublev, “Long-term changes in the aerosol optical thickness in moscow and correction under strong atmospheric turbidity,” Izv. Atmos. Ocean. Phys. 52 (2), 188–195 (2016).

    Article  Google Scholar 

  7. N. Y. Chubarova, A. A. Poliukhov, and I. D. Gorlova, “Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction,” Atmos. Meas. Tech. 9 (2), 313–334 (2016).

    Article  Google Scholar 

  8. N. Chubarova, A. Smirnov, and B. N. Holben, “Aerosol properties in Moscow according to 10 years of AERONET measurements at the meteorological observatory of Moscow State University,” Geogr., Environ., Sustain. 4 (1), 19–32 (2011).

    Google Scholar 

  9. J. Lee, J. Kim, C. H. Song, S. B. Kim, Y. Chun, B. J. Sohn, and B. N. Holben, “Characteristics of aerosol types from AERONET sunphotometer measurements,” Atmos. Environ. 44 (26), 3110–3117 (2010).

    Article  ADS  Google Scholar 

  10. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London, Ser. A 454 (1971), 903–995 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Y. Wu and Y. L. Chung, “Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach,” Smart Mater. Struct. 18 (9), 095004 (2009).

    Article  ADS  Google Scholar 

  12. K. Torseth, W. Aas, K. Breivik, A. M. Fjæraa, M. Fiebig, A. G. Hjellbrekke, C. L. Myhre, S. Solberg, and K. E. Yttri, “Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009,” Atmos. Chem. Phys. 12 (12), 5447–5481 (2012).

    Article  ADS  Google Scholar 

  13. About the State of the Environment in Moscow in 2017. Report, Ed. by A.O. Kul’bachevskii (DPiOOS, Moscow, 2018) [in Russian].

  14. M. E. Koukouli, S. Kazadzis, V. Amiridis, C. Ichoku, D. S. Balis, and A. F. Bais, “Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans,” Atmos. Environ. 44 (9), 1219–1228 (2010).

    Article  ADS  Google Scholar 

  15. Z. Y. Zhang, M. S. Wong, and J. Nichol, “Global trends of aerosol optical thickness using the ensemble empirical mode decomposition method,” Int. J. Climatol. 36 (13), 4358–4372 (2016).

    Article  Google Scholar 

  16. Environmental and Climate Characteristics of the Atmosphere in Moscow in 2017 According to the Measurements of the Moscow State University Meteorological Observatory, Ed. by M. A. Lokoshchenko (MAKS Press, Moscow, 2018) [in Russian].

  17. E. V. Rocheva and V. D. Smirnov, “Trends in changes in the long-term “heat wave” on the Russian territory,” Problemy Ekol. Monitor. Model. Ekosist. 25, 94–114 (2013).

    Google Scholar 

  18. V. V. Popova, “Present-day changes in climate in the north of Eurasia as a manifestation of variation of the large-scale atmospheric circulation,” Fundam. Prikl. Klimatol. No. 1, 84–112 (2018).

    Google Scholar 

  19. T. Gao, J. Yu, and H. Paek, “Impacts of four Northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific,” Theor. Appl. Climatol 129 (3-4), 815–831 (2017).

    Article  ADS  Google Scholar 

  20. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements,” J. Geophys. Res.: Atmos. 105 (D8), 9791–9806 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (through the grant no. 17-77-10 132).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Zhdanova, Yu. O. Khlestova or N. E. Chubarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, E.Y., Khlestova, Y.O. & Chubarova, N.E. Trends in Atmospheric Aerosol Characteristics in Moscow Derived from Multiyear AERONET Measurements. Atmos Ocean Opt 32, 534–539 (2019). https://doi.org/10.1134/S1024856019050191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050191

Keywords:

Navigation