Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 521–527 | Cite as

Black Carbon in Near-Surface Air in Pechora-Ilych Nature Reserve: Measurements and Sources

  • A. A. VinogradovaEmail author
  • V. M. Kopeikin
  • N. S. Smirnov
  • A. V. Vasileva
  • Yu. A. Ivanova


New data on the black carbon (BC) content in the atmosphere are obtained during year-round daily monitoring of BC concentration in the near-surface air layer in a hard-to-reach region of the northern Urals (on the territory of Pechora-Ilych Nature Reserve) with the time resolution of 1 day. Results are analyzed for the cold half-year (from October 2017 to March 2018), when only BC of anthropogenic origin is present in the atmosphere and no fire effect is possible. Average BC concentrations (plus or minus standard deviation) are (296 ± 172) and (175 ± 82) ng/m3 in the near-surface air of Yaksha settlement and outside it, respectively. Comparison of monthly average BC concentrations in the near-surface air with those estimated from satellite observations ( shows a satisfactory agreement, serving as a cross-check and confirming the reliability of results. Trajectory analysis of long-range transport of air masses and BC for the region of Pechora-Ilych nature reserve made it possible to identify the main anthropogenic BC sources in the atmosphere at distances less than 500 km on industrial territories of the central Urals, areas of carbon-containing fuel production in Yamalo-Nenets and Khanty-Mansiysk Autonomous Districts, in the cities and settlements of Perm oblast, Udmurtia, and the Komi Republic.


atmosphere near-surface layer pollution black carbon continuous monitoring Pechora-Ilych nature reserve anthropogenic sources 



The authors thank organizers of the Air Resources Laboratory website for the opportunity of freely using the HYSPLIT model.


This work was supported by the Russian Foundation for Basic Research (grant no. 17-05-00245).


The authors declare that they have no conflicts of interest.


  1. 1.
    AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers (Arctic Monitoring and Assessment Programme, Oslo, 2015).Google Scholar
  2. 2.
    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016).CrossRefGoogle Scholar
  3. 3.
    T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res. Atmos. 118, 5380–5552 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    L. Schmeisser, J. Backman, J. A. Ogren, E. Andrews, E. Asmi, S. Starkweather, T. Uttal, M. Fiebig, S. Sharma, K. Eleftheriadis, S. Vratolis, M. Bergin, P. Tunved, and A. Jefferson, “Seasonality of aerosol optical properties in the Arctic,” Atmos. Chem. Phys. 18, 11599–11622 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Kopeikin, “Monitoring of the soot aerosol in the atmosphere over Russia in the TROICA international experiments,” Atmos. Ocean. Opt. 20 (7), 586–590 (2007).Google Scholar
  6. 6.
    A. S. Emilenko and V. M. Kopeikin, “Comparison of synchronous measurements of soot and submicron aerosol concentrations in regions with different anthropogenic loadings,” Atmos. Ocean. Opt. 22 (4), 421–427 (2009).CrossRefGoogle Scholar
  7. 7.
    M. T. Limon-Sanchez, P. Carbajal-Romero, L. Hernandez-Mena, H. Saldarriaga-Norena, A. Lopez-Lopez, R. Cosio-Ramirez, J. L. Arriaga-Colina, and W. Smith, “Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008,” Atmos. Pollut. Res. 2, 358–365 (2011).CrossRefGoogle Scholar
  8. 8.
    V. M. Kopeikin, A. S. Emilenko, A. A. Isakov, O. V. Loskutova, and T. Ya. Ponomareva, “Variability of soot and fine aerosol in the Moscow Region in 2014-2016,” Atmos. Ocean. Opt. 31 (3), 243–249 (2018).CrossRefGoogle Scholar
  9. 9.
    M. V. Panchenko and E. P. Yausheva, “Diurnal variations of the submicron aerosol and black carbon in the near-ground layer,” Atmos. Oceanic Opt. 24 (1), 30–38 (2011).CrossRefGoogle Scholar
  10. 10.
    A. P. Makshtas, T. Uttal, T. Laurilla, and N. A. Paramonova, “Hydrometeorological Observatory Tiksi (Five-year anniversary),” Probl. Arktiki Antarktiki, No. 2, 5–12 (2015).Google Scholar
  11. 11.
    O. Popovicheva, E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttae, and K. Eleftheriadis, “East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi,” Sci. Total Environ. 655, 924–938 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    V. M. Kopeikin, I. A. Repina, E. I. Grechko, and B. I. Ogorodnikov, “Measurements of soot aerosol content in the near-water atmospheric layer in the Southern and Northern hemispheres,” Atmos. Oceanic Opt. 23 (6), 500–507 (2010).CrossRefGoogle Scholar
  13. 13.
    V. S. Kozlov, V. P. Shmargunov, and M. V. Panchenko, “Seasonal variability of the vertical profiles of absorption parameters of submicron aerosol in the troposphere,” Atmos. Oceanic Opt. 22 (4), 413–420 (2009).CrossRefGoogle Scholar
  14. 14.
    S. J. Doherty, S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, “Light-absorbing impurities in Arctic snow,” Atmos. Chem. Phys. 10, 11647–11680 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    V. P. Shevchenko, K. P. Kutsenogii, V. I. Makarov, M. V. Panchenko, V. V. Pol’kin, S. A. Popova, and A. N. Novigatskii, “Aerosols,” in The White Sea System. Vol. 2. Water Depth and Interacting with It Atmosphere, Cryosphere, River Runoff, and Biosphere (Nauchnyi mir, Moscow, 2012), p. 50–69 [in Russian].Google Scholar
  16. 16.
    J. G. Acker and G. Leptoukh, “Online analysis enhances use of NASA Earth Science data,” Eos., Trans. Am. Geophys. Union 88 (2), 14–17 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. D. A. Hansen, H. Rosen, and T. Novakov, “The aethalometer—an instrument for real-time measurement of optical absorption by aerosol particles,” Sci. Total. Environ. 36 (1), 191–196 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Vinogradova, “Distant evaluation of the influence of air pollution on remote areas,” Izv. Atmos. Ocean. Phys. 51 (7), 712–722 (2015).CrossRefGoogle Scholar
  19. 19.
    Air Quality Engineering & Climate Studies Research Group. (Cited February 11, 2019).Google Scholar
  20. 20.
    Air Resources Laboratory. (Cited February 11, 2019).Google Scholar
  21. 21.
    K. Huang, J. S. Fu, V. Y. Prikhodko, J. M. Storey, A. Romanov, E. L. Hodson, J. Cresko, I. Morozova, Y. Ignatieva, J. Cabaniss, “Russian Anthropogenic Black Carbon: Emission Reconstruction and Arctic Black Carbon Simulation,” J. Geophys. Res. Atmos 120 (2015).Google Scholar
  22. 22.
    V. A. Makarov and S. Okhta, “Organic and inorganic carbon in atmospheric aerosols over Yakutia,” Atmos. Ocean. Opt. 17 (9), 690–693 (2004).Google Scholar
  23. 23.
    A. A. Vinogradova, T. B. Titkova, and Yu. A. Ivanova, “Episodes with anomalously high black carbon concentration in surface air in the region of Tiksi station, Yakutiya,” Atmos. Ocean. Opt. 32 (1), 94–102 (2019).CrossRefGoogle Scholar
  24. 24.
    S. L. Gong, T. L. Zhao, S. Sharma, D. Toom-Sauntry, D. Lavoue, X. B. Zhang, W. R. Laitch, and L. A. Barrie, “Identification of trends and interannual variability of sulfate and black carbon in the Canadian High Arctic: 1981–2007,” J. Geophys. Res. 115 (2010).
  25. 25.
    Q. Wang, D. J. Jacob, J. A. Fisher, J. Mao, E. M. Leibensperger, C. C. Carouge, P. Le Sager, Y. Kondo, J. L. Jimenez, M. J. Cubison, and S. J. Doherty, “Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: Implications for radiative forcing,” Atmos. Chem. Phys. 11, 12453–12473 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    K. Eleftheriadis, S. Vratolis, and S. Nyeki, “Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007,” Geophys. Rev. Lett. 36 (2009). CrossRefGoogle Scholar
  27. 27.
    V. P. Shevchenko, D. P. Starodymova, A. A. Vinogradova, A. P. Lisitsyn, V. N. Makarov, S. A. Popova, V. V. Sivonen, and V. P. Sivonen, “Elemental and organic carbon in atmospheric aerosols over the Northwestern Coast of Kandalaksha Bay of the White Sea,” Dokl. Earth Sci. 461 (1), 242–246 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    V. S. Kozlov, A. B. Tikhomirov, M. V. Panchenko, V. P. Shmargunov, V. V. Pol’kin, S. M. Sakerin, A. P. Lisitzin, and V. P. Shevchenko, “Optical and microphysical parameters of aerosol in the near-water atmosphere of the White Sea as assessed from the data of simultaneous ship-borne and coast-based measurements in August 2006,” Atmos. Oceanic Opt. 22 (5), 517–526 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky, “Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions,” Atmos. Chem. Phys. 13 (17), 8833–8855 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    Access NASA Earth Science Data. https://giovanni.gsfc. (Cited February 11, 2019).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Vinogradova
    • 1
    Email author
  • V. M. Kopeikin
    • 1
  • N. S. Smirnov
    • 2
  • A. V. Vasileva
    • 1
  • Yu. A. Ivanova
    • 1
  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Pechora-Ilych State Nature Biospheric Reserve, Komi RepublicYaksha SettlementRussia

Personalised recommendations