Skip to main content
Log in

Model for Estimating the Transient Response of the Global Mean Surface Temperature to Changes in the Concentrations of Atmospheric Aerosols and Radiatively Active Gases

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A two-component energy-balance climate model (EBM) is considered, which allows estimating the transient response of the global mean surface temperature (i.e., the Earth climate system response) to radiative forcing due to atmospheric aerosols and radiatively active gases in accordance with the specified scenarios of their atmospheric content. An expression for the impulse response function of EBM is analytically derived. The response of the climate system to arbitrary external radiative forcing is calculated as a convolution of two functions – an impulse response function and a function describing the radiative forcing. The comparative analysis of the numerical calculation results for two idealized scenarios of radiative forcing (step function and linearly increasing radiative disturbance) and the exact solution analytically derived shows a fairly high accuracy of the approach. Using the impulse response function, we estimate the response of the global mean surface temperature to radiative forcing specified by several scenarios of an increase in the concentrations of greenhouse gases (four RCP scenarios) and volcanic aerosol (1991 eruption of the Pinatubo volcano). Since the technique suggested for estimating the transient climate response to radiative forcing is quite accurate and computationally inexpensive, it can be used as an express analysis tool for estimating the climate system response to arbitrary radiative disturbance caused by natural and anthropogenic aerosols and radiatively active gases including greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. V. Kabanov and V. E. Zuev, Optics of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  2. A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Effect of natural and anthropogenic aerosols on the global and regional climate,” Ros. Khim. Zh. 52 (5), 112–119 (2008).

    Google Scholar 

  3. L. S. Ivlev, “Aerosols and global climate change,” Region. Ekol., No. 3-4, 83–93 (2011).

  4. G. Myhre, C. E. L. Myhre, B. H. Samset, and T. Storelvmo, “Aerosols and their relation to global climate and climate sensitivity,” Nature Education Knowledge 4(5) (7) (2013).

  5. O. Boucher, Atmospheric Aerosols: Properties and Climate Impacts (Springer, Dordrecht, 2015).

    Google Scholar 

  6. S. J. Smith and T. C. Bond, “Two hundred fifty years of aerosols and climate: The end of the age of aerosols,” Atmos. Chem. Phys. 14 (2), 537–549 (2014).

    Article  ADS  Google Scholar 

  7. Yu. P. Perevedentsev, Theory of Climate (Kazan. gos. univ., Kazan, 2009) [in Russian].

  8. V. F. Loginov, Radiation Factors and Evidence Basis for Modern Climate Changes (Belorusskaya Nauka, Minsk, 2012) [in Russian].

    Google Scholar 

  9. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Simulation of climate and its changes,” Vestn. Rus. Akad. Nauk 82 (3), 227–236 (2012).

    Google Scholar 

  10. H. Ritchie and M. Roser, CO2 and other Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (Cited December 29, 2018).

  11. I. S. A. Isaksen, C. Granier, G. Myhre, T. K. Berntsen, S. B. Dalsoren, M. Gauss, Z. Klimont, R. Benestad, P. Bousquet, W. Collins, T. Cox, V. Eyring, D. Fowler, S. Fuzzi, P. Jockel, P. Laj, U. Lohmann, M. Maione, P. Monks, A. S. H. Prevot, F. Raes, A. Richter, B. Rognerud, M. Schulz, D. Shindell, D. Stevenson, T. Storelvmo, W. C. Wang, M. van Weele, M. Wild, and D. Wuebbles, “Atmospheric composition change: Climate-chemistry interactions,” Atmos. Environ. 43 (33), 5138–5192 (2009).

    Article  ADS  Google Scholar 

  12. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignot, S.K. Allen, J. Boschung, A. Nauels A. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, New York, 2013).

  13. M. Yoshimori, M. Watanabe, H. Shiogama, A. Oka, OhgaitoR. Abe-Ouchi, and Y. Kamae, “A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation,” Progress Earth Planet. Sci. 3 (21), 14 (2016).

    Article  ADS  Google Scholar 

  14. R. Pincus, P. M. Forster, and B. Stevens, “The Radiative Forcing Model Intercomparison Project (RFMIP): Experimental protocol for CMIP6,” Geosci. Model Dev. 9, 3447–3460 (2016).

    Article  ADS  Google Scholar 

  15. J. S. Risbey, M. R. Grose, D. P. Monselesan, T. J. O' Kane, and S. Lewandowsky, “Transient response of the global mean warming rate and its spatial variation,” Weather Clim. Extremes 18, 55–64 (2017).

    Article  Google Scholar 

  16. K. E. Taylor, M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, “Estimating shortwave radiative forcing and response in climate models,” J. Clim. 30, 2530–2543 (2007).

    Article  ADS  Google Scholar 

  17. A. S. Gritsun, G. Branstator, and V. P. Dymnikov, “Construction of the linear response operator of an atmospheric general circulation model to small external forcing,” Russ. J. Numer. Anal. Math. Model 17, 399–416 (2002).

    MathSciNet  MATH  Google Scholar 

  18. D. M. Westervelt, L. W. Horowitz, V. Naik, J.‑C. Golaz, and D. L. Mauzerall, “Radiative forcing and climate response to projected 21st century aerosol decreases,” Atmos. Chem. Phys. 15, 12681–12703 (2015).

    Article  ADS  Google Scholar 

  19. R. Cheridan, J. Quaas, M. Salzmann, and L. Tomassini, “Black carbon indirect radiative effects in a climate model,” Tellus Ser. B 69 (2017).

  20. K. L. Ricke and D. W. Keith, “Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target,” Phil. Trans. Roy. Soc. A 376, 20160454 (2018).

    Article  Google Scholar 

  21. P. J. Irvine, B. Kravitz, M. G. Lawrence, and H. Muri, “An overview of the Earth system science of solar geoengineering,” WIREs Clim. Change 7, 815–833 (2016).

    Article  Google Scholar 

  22. Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, A. P. Revokatova, and A. G. Ryaboshapko, “The ability of stratospheric climate engineering in stabilizing global mean temperatures and an assessment of possible side effects,” Atmos. Sci. Lett. 15, 140–148 (2014).

    Article  Google Scholar 

  23. H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe, “The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results,” Geosci. Model Dev. 8, 2279–2292 (2015).

    Google Scholar 

  24. S. A. Soldatenko and R. M. Yusupov, “Optimal control of artificial sulfate aerosols usage to mitigate global warming,” Atmos. Ocean. Opt. 32 (1), 55–63 (2019).

    Article  Google Scholar 

  25. S. A. Soldatenko and R. M. Yusupov, “Optimal control of aerosol emissions into the stratosphere to stabilize the Earth’s climate,” Izv., Atmos. Ocean. Phys. 54 (5), 480–486 (2018).

    Article  Google Scholar 

  26. K. Ya. Kondratyev. “Aerosol and climate studies: Current state and prospects. 3. Aerosol radiative forcing,” Atmos. Ocean. Opt. 19 (7), 505–513 (2006).

    Google Scholar 

  27. E. M. Volodin, “Representation of heat, moisture and momentum fluxes in the climate models. radiation fluxes,” Fundam. Prikl. Klimatol. 3, 5–15 (2017).

    Google Scholar 

  28. Z. Zhang and J. C. Moore, Mathematical and Physical Fundamentals of Climate Change (Elsevier, Boston, 2014).

    Google Scholar 

  29. D. J. Stensrud, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models (Cambridge University Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  30. M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  31. G. R. North and K.-Y. Kim, Energy balance climate model (Wiley-VCH, Weinheim, 2017).

    Book  Google Scholar 

  32. G. F. Konovalov, Radio Automatics (Vyssh. shk., Moscow, 1990) [in Russian].

  33. K. Rypdal, “Global warming projections derived from an observation-based minimal model,” Earth Syst. Dyn. 7, 51–70 (2016).

    Article  ADS  Google Scholar 

  34. J. M. Gregory, “Vertical heat transport in the ocean and their effect on time-dependent climate change,” Clim. Dyn. 16, 501–515 (2000).

    Article  Google Scholar 

  35. I. M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, “Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing,” J. Clim 23, 2418–2427 (2010).

    Article  ADS  Google Scholar 

  36. K. E. Trenberth, Climate System Modelling (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  37. O. Geoffroy, D. Saint-Martin, D. J. L. Olivie, A. Voldoire, G. Bellon, and S. Tyteca, “Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments,” J. Clim. 26, 1841–1857 (2012).

    Article  ADS  Google Scholar 

  38. K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Am. Meteor. Soc 93, 485–498 (2011).

    Article  Google Scholar 

  39. M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, and D. P. P. van Vuuren, “The RCP greenhouse gas concentrations and their extensions from 1765 to 2300,” Clim. Change 109, 213–241 (2011).

    Article  ADS  Google Scholar 

  40. K. Riahi, A. Gruebler, and N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technol. Forecast. Soc. Change 74 (7), 887–935 (2007).

    Article  Google Scholar 

  41. L. Schneider, J. E. Smerdon, F. Pretis, C. Hartl-Meier, and J. Esper, “A new archive of large volcanic events over the past millennium derived from reconstructed summer temperatures,” Environ. Res. Lett. 12, 094005 (2017).

    Article  ADS  Google Scholar 

  42. F. Arfeuille, D. Weinsenstein, H. Mack, E. Rozanov, T. Peter, and S. Bronnimann, “Volcanic forcing for climate modelling: A new microphysics-based data set covering years 1600-present,” Clim. Past 10, 359–375 (2014).

    Article  Google Scholar 

  43. S. Kinne, D. O' Donnel, P. Stier, S. Kloster, K. Zhang, H. Schmidt, S. Rast, M. Giorgetta, T. F. Eck, and B. Stevens, “MAC-V1: A new global aerosol climatology for climate studies,” J. Adv. Model. Earth Syst. 5, 704–740 (2013).

    Article  ADS  Google Scholar 

  44. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (NIIKh SPbGU, SPb, 1999) [in Russian].

  45. G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal, “New estimates of radiative forcing due to well mixed greenhouse gases,” Geophys. Rev. Lett. 25, 2715–2718 (1998).

    Article  ADS  Google Scholar 

  46. G. D. Myhre, F.-M. Shindell, W. Breon, W. Collins, L. Fuglestvedt, J. Huang, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, “Anthropogenic and natural radiative forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (United Kingdom, New York: Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  47. J. Hansen, M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhang, “Efficacy of climate forcing,” J. Geophys. Res. 110, D18104, 45 (2005).

    Google Scholar 

  48. M. Sato, J. E. Hansen, M. P. McCormick, and J. B. Pollack, “Stratospheric aerosol optical depth, 1850–1990,” J. Geophys. Res. 98, 22987–22994 (1993).

    Article  ADS  Google Scholar 

  49. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (United Kingdom, New York: Cambridge University Press, Cambridge, 2013).

  50. P. Ward, “Sulfur dioxide initiates global climate change in four ways,” Thin Solid Films 517, 3188–3203 (2009).

    Article  ADS  Google Scholar 

  51. D. E. Parker, H. Wilson, P. D. Jones, J. R. Christy, C. K. Folland, “The impact of mount Pinatubo on world-wide temperatures,” Int. J. Climatol. 16, 487–497 (1996).

    Article  Google Scholar 

  52. J. Grieser and C.-D. Schonwiese, “Parameterization of spatio-temporal patterns of volcanic aerosol induced stratospheric optical depth and its climate radiative forcing,” Atmosfera 12, 111–133 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Soldatenko or R. M. Yusupov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, S.A., Yusupov, R.M. Model for Estimating the Transient Response of the Global Mean Surface Temperature to Changes in the Concentrations of Atmospheric Aerosols and Radiatively Active Gases. Atmos Ocean Opt 32, 578–585 (2019). https://doi.org/10.1134/S1024856019050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050154

Keywords:

Navigation