Skip to main content
Log in

Numerical Simulation of the Adaptive Control System of the Composite Primary Mirror of a Large-Size Space Telescope

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We describe a mathematical model developed for the adaptive control system of the composite primary mirror of a telescope similar in characteristics to the international project of the Millimetron space telescope. Results of numerical simulation of the adaptive control system with allowance for restrictions of the hardware–software implementation are presented. According to results of the simulation, the error of maintaining the shape of the composite primary mirror is estimated. The estimate corroborates the applicability of the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. http://millimetron.ru/index.php/ru/ (Cited January 15, 2018).

  2. N. S. Kardashev, I. D. Novikov, V. N. Lukash, S. V. Pilipenko, E. V. Mikheeva, D. V. Bisikalo, D. Z. Wiebe, A. G. Doroshkevich, A. V. Zasov, I. I. Zinchenko, P. B. Ivanov, V. I. Kostenko, T. I. Larchenkova, S. F. Likhachev, I. F. Malov, V. M. Malofeev, A. S. Pozanenko, A. V. Smirnov, A. M. Sobolev, A. M. Cherepashchuk, and Yu. A. Shchekinov, “Review of scientific topics for the Millimetron space observatory,” Phys.–Usp. 57 (12), 1199–1228 (2014). https://doi.org/10.3367/UFNe.0184.201412c.1319

    Article  Google Scholar 

  3. S. N. Sayapin, Yu. N. Artemenko, and N. V. Myshonkova, “Problemy pretsizionnosti kriogennogo kosmicheskogo teleskopa observatorii "Millimetron”, Vestn. MGTU, Ser. Estestv. Nauki, No. 2, 50–76 (2014).

    Google Scholar 

  4. V. V. Sychev and A. I. Klem, “Adaptation problems in the space telescope of the Millimetron observatory,” Atmos. Oceanic Opt. 30 (4), 389–398 (2017).

    Article  Google Scholar 

  5. V. V. Sychev and A. I. Klem, “Algorithm for controlling a multielement mirror using the Millimetron space telescope as an example,” Atmos. Oceanic Opt. 31 (6), 667–675 (2018).

    Google Scholar 

  6. V. V. Sychev and A. I. Klem, “Metrological control of the spatial positions of elements of the Millimetron telescope primary mirror,” Atmos. Oceanic Opt. 31 (6), 676–681 (2018).

    Google Scholar 

  7. E. K. Samygina, L. N. Rassudov, and A. P. Balkovoi, “Comparison of linear position and velocity control strategies for a direct servodrive,” in 25th Intern. Workshop on Electric Drives: Optimization in Control of Electric Drives (Moscow, 2018), p. 1–5. https://doi.org/10.1109/IWED.2018.8321382

  8. S. D. Fedorchuk and M. Yu. Arkhipov, “On the assurance of the design accuracy of the space radio telescope RadioAstron,” Cosmic. Res. 52 (5), 379–381 (2014).

    Article  ADS  Google Scholar 

  9. Hongwei Fang, Changliang Xia, Zhengwei Chen, and Xile Wei, “Position servo control of brushless DC motor based on the second discrete filter,” in IEEE Intern. Conf. on Robotics and Biomimetics. Sanya, 2007, p. 1838–1842. https://doi.org/10.1109/ROBIO.2007.4522446

  10. L. Biagiotti, C. Melchiorri, and R. Zanasi, “Dynamic filters for online planning optimal trajectories,” in Motion Control Convengo Nazionale ANIPLA (Milano, 2010).

  11. C. Guarino Lo Bianco and F. Ghilardelli, “A discrete-time filter for the generation of signals with asymmetric and variable bounds on velocity, acceleration, and jerk,” IEEE Trans. Ind. Electron. Control Instrum. 61 (8), 4115–4125 (2014).

    Article  Google Scholar 

  12. E. K. Samygina, “Enhancement of servodrive control system for exact tracking in the extended speed range,” in X Intern. Conf. on Electrical Power Drive Systems (Novochrekassk, 2018), p. 123–126.

  13. J. Wang, J. Wu, C. Gan, and Q. Sun, “Comparative study of flux-weakening control methods for PMSM drive over wide speed range,” 19th Intern. Conf. on Electrical Machines and Systems, Chiba, 2016, p. 1–6.

  14. L. N. Rassudov and A. P. Balkovoi, “Dynamic model exact tracking control of a permanent magnet synchronous motor,” in Proc. Intern. Siberian Conf. on Control and Communications (Omsk, 2015), p. 1–4.

  15. C. Sheikholeslami, J. Goers, and B. Kramer, “Modern motion control strategies obtain consistent and better performance in uncertain conditions,” ACS Motion Control, 1–8 (2010).

  16. J. Böcker, S. Beineke, and A. Bähr, “On the control bandwidth of servo drives,” in Proc. 13th Europ. Conf. on Power Electronics and Applications (Barcelona, 2009), p. 1–10.

  17. Torque motor (direct drive motor): Technical information. https://www.hiwin.com/pdf/torque_motor_rotary_ tables.pdf (Cited January 15, 2018).

  18. M. N. Sokol’skii, Tolerances and Quality of Optical Images (Mashinostroenie, Leningrad, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. K. Samygina or A. I. Klem.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samygina, E.K., Klem, A.I. Numerical Simulation of the Adaptive Control System of the Composite Primary Mirror of a Large-Size Space Telescope. Atmos Ocean Opt 32, 590–596 (2019). https://doi.org/10.1134/S1024856019050142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050142

Keywords:

Navigation