Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 511–520 | Cite as

Measurements of Physicochemical Characteristics of Atmospheric Aerosol at Research Station Ice Base Cape Baranov in 2018

  • S. M. SakerinEmail author
  • L. P. Golobokova
  • D. M. Kabanov
  • D. A. Kalashnikova
  • V. S. Kozlov
  • I. A. Kruglinsky
  • V. I. Makarov
  • A. P. Makshtas
  • S. A. Popova
  • V. F. Radionov
  • G. V. Simonova
  • Yu. S. Turchinovich
  • T. V. Khodzher
  • O. I. Khuriganowa
  • O. V. Chankina
  • D. G. Chernov


We discuss the results of measurements in the region of Cape Baranov (the Severnaya Zemlya archipelago) of the set of physicochemical characteristics of atmospheric aerosol: aerosol optical depth, aerosol and black carbon concentrations, elemental and ion compositions of aerosol, organic and elemental carbon contents in aerosol, as well as the isotopic composition of carbon in the aerosol and snow samples. It is shown that the average values of most aerosol characteristics, measured in April–June 2018, are a little lower than in the Arctic settlement Barentsburg (Spitsbergen archipelago) and several-fold smaller than in the south of Western Siberia in the same period.


aerosol black carbon ion elemental isotopic composition Severnaya Zemlya 



The authors thank M. A. Loskutova and D. D. Rize of the Arctic and Antarctic Research Institute for participation in measurements, as well as S. A. Turchinovich and V. P. Shmargunov for preparing instruments.


This work was supported by the Complex Program of Basic Research, Siberian Branch, Russian Academy of Sciences II.1 (projects nos. АААА-F18-118012500294-9, АААА-А18-118012490017-8, АААА-А18-118122190007-8, and АААА-А17-117122190017-8), Ministry of Education and Science of the Russian Federation (project RFMEFI61617X0076), and Subprogram 4 “Organization and support of works and scientific research in the Arctic and Antarctica” of State Program of the Russian Federation “Environmental protection” for 2012–2020.


The authors declare that they have no conflicts of interest.


  1. 1.
    O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Atmospheric Transparency in the IR and Visible (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  2. 2.
    C. Tomasi, A. A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, M. Mazzola, R. S. Stone, C. Lanconelli, V. Vitale, B. N. Holben, S. Nyeki, C. Wehrli, V. Altonen, G. de Leeuw, E. Rodriguez, A. B. Herber, K. Stebel, A. Stohl, N. T. O' Neill, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, J. Butler, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar regions,” Earth-Sci. Rev. 140, 108–157 (2015). ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Shevchenko, A. P. Lisitsyn, A. A. Vinogradova, V. V. Smirnov, V. V. Serova, and R. Shtain, “Arctic aerosols. Results of ten-year investigations,” Atmos. Ocean. Opt. 13 (6-7.), 510–533 (2000).Google Scholar
  4. 4.
    V. P. Shevchenko, A. A. Vinogradova, A. P. Lisitsyn, A. N. Navigatskii, and N. V. Goryunova, “Atmospheric aerosols as a source of sedimentation and pollution in the Arctic Ocean,” in The System of the Laptev Sea and Adjacent Arctic seas: Status and History (Izd-vo Mosk. Un-ta, Moscow, 2009), p. 150-172 [in Russian].Google Scholar
  5. 5.
    K. Eleftheriadis, S. Vratolis, and S. Nyeki, “Aerosol black carbon in the European Arctic: Measurements at Zeppelin Station, Ny-Ålesund, Svalbard from 1998–2007,” Geophys. Res. Lett. 36 (2009). CrossRefGoogle Scholar
  6. 6.
    S. M. Sakerin, D. G. Chernov, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, V. V. Pol’kin, and V. F. Radionov, “Preliminary results of the study of aerosol characteristic of the atmosphere near Barentsburg (Spitsbergen),” Problemy Arktiki Antarktiki. No. 1(91), 20–31 (2012).Google Scholar
  7. 7.
    R. S. Stone, S. Sharma, A. Herber, K. Eleftheriadis, and D. W. Nelson, “A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements,” Elem. Sci. Anth. 2 (2014). Google Scholar
  8. 8.
    L. Schmeisser, J. Backman, J. A. Ogren, E. Andrews, E. Asmi, S. Starkweather, T. Uttal, M. Fiebig, S. Sharma, K. Eleftheriadis, S. Vratolis, M. Bergin, P. Tunved, and A. Jefferson, “Seasonality of aerosol optical properties in the Arctic,” Atmos. Chem. Phys. 18 (16), 11599–11622 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    V. P. Shevchenko, D. P. Starodymova, A. A. Vinogradova, A. P. Lisitsyn, V. N. Makarov, S. A. Popova, V. V. Sivonen, and V. P. Sivonen, “Elemental and Organic Carbon in Atmospheric Aerosols over the Northwestern Coast of Kandalaksha Bay of the White Sea,” Dokl. Earth Sci. 461 (1), 242–246 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    D. K. Singh, K. Kawamura, A. Yanase, and L. A. Barrie, “Distributions of polycyclic aromatic hydrocarbons, aromatic ketones, carboxylic acids, and trace metals in Arctic aerosols: Long-range atmospheric transport, photochemical degradation/production at polar sunrise,” Environ. Sci. Technol. 51, 8992 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    R. Lange, M. Dall’Osto, H. Skov, J. K. Nojgaard, I. E. Nielsen, D. C. S. Beddows, R. Simo, R. M. Harrison, and A. Massling, “Characterization of distinct Arctic aerosol accumulation modes and their sources,” Atmos. Environ. 183, 1–10 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttal, and K. Eleftheriadis, “East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi,” Sci. Total Environ. 655, 924–938 (2019).ADSCrossRefGoogle Scholar
  13. 13.
    D. Widory, “Combustibles, fuels and their combustion products: A view through carbon isotopes,” Combust. Theory Modell. 10, 831–841 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Vinogradova and T. Ya. Ponomareva, “Atmospheric transport of anthropogenic impurities to the Russian Arctic (1986–2010),” Atmos. Ocean. Opt. 25 (6), 414–422 (2012).CrossRefGoogle Scholar
  15. 15.
    A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).CrossRefGoogle Scholar
  16. 16.
    A. A. Vinogradova and A. V. Vasileva, “Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).CrossRefGoogle Scholar
  17. 17.
    A. P. Makshtas and T. Uttal, “Start of the joint Russian-American atmospheric observations in Tiksi,” Ros. Polyar. Issled. No. 2, 35–38 (2010).Google Scholar
  18. 18.
    E. Asmi, V. Kondratyev, D. Brus, T. Laurila, H. Lihavainen, J. Backman, V. Vakkari, M. Aurela, J. Hatakka, Y. Viisanen, T. Uttal, V. Ivakhov, and A. Makshtas, “Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic,” Atmos. Chem. Phys. 16, 1271–1287 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    A. P. Makshtas and V. T. Sokolov, “Scientific-research station “Ice Base "Mys Baranova”—summer field season of 2014,” Ros. Polyar. Issled. No. 3(17), 10–12 (2014).Google Scholar
  20. 20.
    S. M. Sakerin, A. A. Bobrikov, O. A. Bukin, L. P. Golobokova, Vas. V. Polkin, Vik. V. Polkin, K. A. Shmirko, D. M. Kabanov, T. V. Khodzher, N. A. Onischuk, A. N. Pavlov, V. L. Potemkin, and V. F. Radionov, “On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along Northern Sea route,” Atmos. Chem. Phys. 15 (21), 12413–12443 (2015). ADSCrossRefGoogle Scholar
  21. 21.
    O. B. Popovicheva, N. Evangeliou, K. Eleftheriadis, A. C. Kalogridis, N. Sitnikov, S. Eckhard, and A. Stohl, “Black carbon sources constrained by observations in the Russian High Arctic,” Environ. Sci. Technol. 51 (7), 3871–3879 (2017). ADSCrossRefGoogle Scholar
  22. 22.
    S. M. Sakerin, D. M. Kabanov, V. V. Pol’kin, L. P. Golobokova, P. N. Zenkova, A. S. Kessel, Vas. V. Pol’kin, V. F. Radionov, S. A. Terpugova, A. V. Urazgildeeva, T. V. Khodzher, and O. I. Khuriganowa, “Features of spatial distribution of aerosol characteristics over Arctic seas,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (39) (2018).
  23. 23.
    O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, Ph. Nedelec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).CrossRefGoogle Scholar
  24. 24.
    D. V. Kirin, N. O. Krutikov, A. N. Luk’yanov, A. M. Strunin, and M. A. Strunin, “Results of the comparative analysis of aerosl admixture propagation in the atmosphere of the Arctic and Moscow region from aircraft data from experimental studies in 2014–2015,” Tr. Voen.-Kosm. akad. im. A.F. Mozhaiskogo. Is. 662, 219–223 (2018).Google Scholar
  25. 25.
    A. Stohl, E. Andrews, J. F. Burkhart, C. Forster, A. Herber, S. W. Hoch, D. Kowal, C. Lunder, T. Mefford, J. A. Ogren, S. Sharma, N. Spichtinger, K. Stebel, R. Stone, J. Strom, K. Torseth, C. Wehrli, and K. E. Yttri, “Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004,” J. Geophys. Res. 111 (D22214) (2006).
  26. 26.
    T. F. Eck, B. N. Holben, J. S. Reid, A. Sinyuk, E. J. Hyer, N. T. O' Neill, G. E. Shaw, CastleJ. R. Vande, F. S. Chapin, O. Dubovik, A. Smirnov, E. Vermote, J. S. Schafer, D. Giles, I. Slutsker, M. Sorokine, and W. W. Newcomb, “Optical properties of boreal region biomass burning aerosols in Central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site,” J. Geophys. Res. 114 (D11201) (2009).
  27. 27.
    S. M. Sakerin, D. M. Kabanov, V. F. Radionov, D. G. Chernov, Yu. S. Turchinovich, K. E. Lubo-Lesnichenko, and A. N. Prakhov, “Generalization of results of atmospheric aerosol optical depth measurements on Spitsbergen Archipelago in 2011–2016,” Atmos. Ocean. Opt. 31 (2), 163–170 (2018).CrossRefGoogle Scholar
  28. 28.
    A. A. Vinogradova, T. B. Titkova, and Yu. A. Ivanova, “Episodes with anomalously high black carbon concentration in surface air in the Region of Tiksi Station, Yakutiya,” Atmos. Ocean. Opt. 32 (1), 94–102 (2019).CrossRefGoogle Scholar
  29. 29.
    L. P. Golobokova, V. V. Pol’kin, N. A. Onishchuk, O. I. Khuriganova, A. B. Tikhomirov, S. A. Terpugova, Vas. V. Pol’kin, Yu. S. Turchinovich, and V. F. Radionov, “Variability of the chemical composition of aerosol in the surface air layer of the “land–ocean” transient zone near eastern Antarctica,” Led Sneg 56 (2), 177–188 (2016).Google Scholar
  30. 30.
    V. I. Makarov, K. P. Koutsenogii, and P. K. Koutsenogii, “Daily and seasonal changes of organic and inorganic carbon content in atmospheric aerosol Novosibirsk Region,” J. Aerosol Sci. 30, S255–S256 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, D. E. Berkaev, V. M. Borin, V. L. Dorokhov, S. E. Karnaev, V. A. Kiselev, E. B. Levichev, O. I. Meshkov, S. I. Mishnev, S. A. Nikitin, I. B. Nikolaev, S. V. Sinyatkin, P. D. Vobly, K. V. Zolotarev, and A. N. Zhuravlev, “Synchrotron radiation research and application at VEPP-4,” Phys. Proc 84, 19–26 (2016). ADSCrossRefGoogle Scholar
  32. 32.
    G. N. Kulipanov, N. A. Mezentsev, and V. F. Pindyurin, “Synchrotron radiation in Novosibirsk: The first 13 years,” J. Struct. Chem. 57 (7), 1277–1287 (2016).CrossRefGoogle Scholar
  33. 33.
    A. T. Lebedev, Mass-Spectrometry for the Analysis of Environmental Objects (Tefnosfera, Moscow, 2013) [in Russian].Google Scholar
  34. 34.
    G. Simonova, Yu. Volkov, V. Kozlov, V. Shmargunov, and D. Kalashnikova, “Atmospheric air pollution studies using the isotope mass-spectrometry,” Conf. Proc. Bulgaria 18 (4.2), 343–348 (2018).
  35. 35.
    V. F. Radionov, D. M. Kabanov, V. V. Kozlov, S. M. Sakerin, O. R. Sidorova, and D. G. Chernov, “Optical and microphysical parameters of aerosol in Barentsburg (2011–2017),” in Abstracts of the XIV All-Russian Scientifc Conf. with Intern. Particip. “Complex Study of the Nature of Spitsbergen and Adjacent Shelf”, Murmansk, October 30 – November 2, 2018 (Cola Scientific Center, Russian Academy of Sciences, Apatity, 2018) [in Russian].
  36. 36.
    V. S. Kozlov, M. V. Panchenko, V. P. Shmargunov, D. G. Chernov, E. P. Yausheva, V. V. Pol’kin, and S. A. Terpugova, “Long-term investigations of the spatiotemporal variability of black carbon and aerosol concentrations in the troposphere of West Siberia and Russian subarctic,” Chem. Sustain. Develop. 24 (4), 423–440 (2016).Google Scholar
  37. 37.
    Y.-L. Xie, P. K. Hopke, P. Paatero, L. A. Barrie, and S.-M. Li, “Identification of source nature and seasonal variations of Arctic Aerosol by positive matrix factorization,” J. Atmos. Sci. 56, 240–260 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    I. Oyabu, S. Matoba, T. Yamasaki, M. Kadota, and Y. Iizuka, “Seasonal variations in the major chemical species of snow at the south east dome in Greenland,” Polar Sci. 10, 36–42 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    J. Pempkowiak, T. Zielinski, T. Petelski, A. Zaborska, and J. Beldowski, “Recent alterations of aerosol concentration, mercury distribution and organic matter deposition in the Arctic,” Pap. Glob. Change 18, 23–33 (2011).ADSGoogle Scholar
  40. 40.
    B. C. Parker, E. J. Zeller, and A. J. Gow, “Nitrogenous chemical composition of Antarctic ice and snow,” Antarctic J. US 14 (5), 80–82 (1982).Google Scholar
  41. 41.
    W. C. Keene, M. A. K. Khalil, IIID. J. Erickson, A. McCulloch, T. E. Graedel, J. M. Lobert, M. L. Aucott, S. L. Gong, D. B. Harper, G. Kleiman, P. Midgley, R. M. Moore, C. Seuzaret, W. T. Sturges, C. M. Benkovitz, V. Koropalov, L. A. Barrie, and Y. F. Li, “Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive chlorine emissions inventory,” J. Geophys. Res. Atmos. D 104 (7), 8429–8440 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    J. C. Cabada, S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori, and B. Turpin, “Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer Method,” Aerosp. Sci. Technol. 38, 140–155 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    P. Winiger, A. Andersson, S. Eckhardt, A. Stohl, and O. Gustafsson, “The sources of atmospheric black carbon at a European gateway to the Arctic,” Nat. Commun. No. 12776 (2016). doi /

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. M. Sakerin
    • 1
    Email author
  • L. P. Golobokova
    • 2
  • D. M. Kabanov
    • 1
  • D. A. Kalashnikova
    • 3
  • V. S. Kozlov
    • 1
  • I. A. Kruglinsky
    • 4
  • V. I. Makarov
    • 5
  • A. P. Makshtas
    • 6
  • S. A. Popova
    • 5
  • V. F. Radionov
    • 6
  • G. V. Simonova
    • 3
  • Yu. S. Turchinovich
    • 1
  • T. V. Khodzher
    • 2
  • O. I. Khuriganowa
    • 2
  • O. V. Chankina
    • 5
  • D. G. Chernov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Limnology Institute, Siberian Branch, Russian Academy of SciencesIrkutskRussia
  3. 3.Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of SciencesTomskRussia
  4. 4.National Research Tomsk State UniversityTomskRussia
  5. 5.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  6. 6.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations