Skip to main content
Log in

Simulation of Transport Coefficients of Aerosols and Nanofluids with Hollow Nanoparticles

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Diffusion of hollow nanoparticles in low-density and rarefied gases and the viscosity of aerosols with such particles are studied using the previously developed kinetic theory and molecular dynamics method. Nitrogen-based aerosols with hollow and solid aluminum and uranium nanoparticles are considered at a temperature of 300 K and atmospheric pressure. Diameter of the nanoparticles was varied from 5 to 100 nm; the thickness of walls of hollow nanoparticles was 1 nm. It is shown that the diffusion coefficients of hollow nanoparticles always exceed those of solid particles of the same size and the same material, but this difference does not exceed 1%. The viscosity of aerosols with hollow nanoparticles is always lower than of aerosols with solid particles. Using the molecular dynamics method, the diffusion coefficients of hollow and solid nanoparticles of the same diameter and the same material in dense argon are found to be equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Rudyak and A. V. Minakov, Modern Problems in Micro- and Nanofluidonics (Nauka, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  2. E. Cunningham, “On the velocity of steady fall of spherical particles through fluid medium,” Proc. R. Soc. 83, 357–365 (1910).

    Article  ADS  Google Scholar 

  3. R. A. Millikan, “Brownian movement in cases at low pressures,” Phys. Rev. 1 (3), 218–221 (1913).

    Article  ADS  Google Scholar 

  4. R. A. Millikan, “The general law of fall of a small spherical body through a gas, and it’s bearing upon the nature of molecular reflection from surfaces,” Phys. Rev. 22 (1), 1–23 (1923).

    Article  ADS  Google Scholar 

  5. C. N. Davies, “Definitive equations for the fluid resistance of spheres,” Proc. Phys. Soc. London 57 (322), Part 4, 259 (1945).

    Article  ADS  Google Scholar 

  6. S. K. Friedlander, Smoke, Dust, Haze. Fundamentals of Aerosol Dynamics (Oxford University Press, New York, Oxford, 2000).

    Google Scholar 

  7. V. Ya. Rudyak and S. L. Krasnolutskii, “Kinetic description of nanoparticle diffusion in rarefied gas,” Dokl. Phys. 46 (12), 897–899 (2001).

    Article  ADS  Google Scholar 

  8. V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, “Methods of measuring the diffusion coefficient and sizes of nanoparticles in a rarefied gas,” Dokl. Phys. 47 (5), 758–761 (2002).

    Article  ADS  Google Scholar 

  9. P. S. Epstein, “On the resistance experienced by spheres in their motion through gases,” Phys. Rev. 23, 710 (1924).

    Article  ADS  Google Scholar 

  10. P. A. Baron and K. Willeke, Aerosol measurement: Principles, techniques, and applications (Wiley, New York, 2001).

    Google Scholar 

  11. V. Ya. Rudyak, S. N. Dubtsov, and A. M. Baklanov, “Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295-600 K at atmospheric pressure,” J. Aerosol Sci. 40 (10), 833–843 (2009).

    Article  ADS  Google Scholar 

  12. V. Ya. Rudyak, S. L. Krasnolutskii, and E. N. Ivashchenko, “Influence of the physical properties of the material of nanoparticles on their diffusion in rarefied gases,” J. Engineer. Phys. Thermophys. 81 (3), 520–524 (2008).

    Article  ADS  Google Scholar 

  13. V. Ya. Rudyak and S. L. Krasnolutskii, “On the viscosity of rarefied gas suspensions containing nanoparticles,” Dokl. Phys. 48 (4), 583–586 (2003).

    Article  ADS  Google Scholar 

  14. V. Ya. Rudyak and S. L. Krasnolutskii, “Effective viscosity coefficient of rarefied gas nanosuspensions,” Atmos. Ocean. Opt. 17 (5-6), 443–448 (2004).

    Google Scholar 

  15. A. A. Einstein, “A new determination of molecular sizes,” Ann. Phys. 19, 289–306 (1906).

    Article  Google Scholar 

  16. G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, Part 1, 97–117 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881).

    MATH  Google Scholar 

  18. V. Ya. Rudyak, A. A. Belkin, E. A. Tomilina, and V. V. Egorov, “Nanoparticle friction force and effective viscosity of nanofluids,” Defect Diffus. Forum 273–276, 566–571 (2008).

  19. V. Ya. Rudyak and A. V. Minakov, “Thermophysical properties of nanofluids,” Eur. Phys. J. E 41, 12 p. (2018).

  20. V. Ya. Rudyak and S. L. Krasnolutskii, “dependence of the viscosity of nanofluids on nanoparticle size and material,” Phys. Lett. A 378, 1845–1849 (2014).

    Article  ADS  Google Scholar 

  21. V. Ya. Rudyak, A. V. Minakov, M. S. Smetanina, and M. I. Pryazhnikov, “Experimental data on the dependence of water and ethylene-glycol nanofluid viscosity on the particle size and material,” Dokl. Phys. 61 (3), 152–154 (2016).

    Article  ADS  Google Scholar 

  22. A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-based cosmeceuticals,” ISRN Dermatol, 14 p. (2014). https://doi.org/10.1155/2014/843687

    Article  Google Scholar 

  23. A. Sharma, S. Kumar, and N. Mahadevan, “Nanotechnology: A promising approach for cosmetics,” Int. J. Recent Adv. Pharm. Rec. 2 (2), 54–61 (2012).

    Google Scholar 

  24. V. Ya. Rudyak and S. L. Krasnolutskii, “Potentials of interaction between hollow and with carrier medium molecules,” Dokl. Acad. Nauk, No. 2(35), 32–42 (2017).

    Google Scholar 

  25. V. Ya. Rudyak and S. L. Krasnolutskii, “Diffusion of nanoparticles in a rarefied gas,” Tech. Phys. 72 (7), 807–813 (2002).

    Article  Google Scholar 

  26. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “Nanoparticle interaction potential,” Dokl. Phys. 57 (1), 33–35 (2012).

    Article  ADS  Google Scholar 

  27. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  28. S. Chapman, T. G. Cowling, and D. Burnett, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  29. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  30. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, “Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials,” J. Phys. Chem. C 112 (44), 17281–17290 (2008).

    Article  Google Scholar 

  31. V. Ya. Rudyak, S. L. Krasnolutskii, and D. A. Ivanov, “Molecular dynamics simulation of nanoparticle diffusion in dense fluids,” Microfluid. Nanofluid. 11 (4), 501–506 (2011).

    Article  Google Scholar 

  32. P. Schofield, “Computer simulation studies of the liquid state,” Comput. Phys. Commun. 5 (1), 17–23 (1973).

    Article  ADS  Google Scholar 

  33. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  34. V. Ya. Rudyak, A. A. Belkin, D. A. Ivanov, and V. V. Egorov, “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient,” High Temp. 46 (1), 35–45 (2008).

    Article  Google Scholar 

  35. G. E. Normann and V. V. Stegailov, “Molecular dynamic method: The concept and the reality,” Nanostructury. Matem. Fiz. Model. 4 (1), 31–59 (2011).

    Google Scholar 

  36. G. E. Normann and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Math. Models Comput. Simul. 24 (6), 3–44 (2012).

    MATH  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (grant nos. 17-01-00040 and 19-08-0040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Rudyak or S. L. Krasnolutskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudyak, V.Y., Krasnolutskii, S.L. Simulation of Transport Coefficients of Aerosols and Nanofluids with Hollow Nanoparticles. Atmos Ocean Opt 32, 545–550 (2019). https://doi.org/10.1134/S1024856019050129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050129

Keywords:

Navigation