Skip to main content
Log in

The Initial Stage of Diffuse Jet Formation in a Pulsed Discharge with a Non-Uniform Electric Field in Air

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Laboratory simulation of the conditions for the occurrence of blue jets in the Earth’s atmosphere has been carried out. For this purpose, the diffuse formation of jets and plasma buildup in corona and apokampic discharges in air has been studied. It is shown that the jets are formed due to streamer breakdown and their color depends on air pressure. At atmospheric air pressures of 30–120 Torr, streamers starting from different parts of a repetitively pulsed discharge are recorded in a nonuniform electric field. It has been ascertained that a spherical corona discharge is formed before a breakdown between pointed electrodes, near a metal high-voltage electrode of positive polarity, from which streamer coronas start as the voltage increases. Data on the streamer head size and streamer propagation speed in the corona and apokampic discharges are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. D. Sentman and E. M. Wescott, “Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere,” Phys. Plasmas 2 (6), 2514 (1995).

    Article  ADS  Google Scholar 

  2. V. P. Pasko, Y. Yair, and C. L. Kuo, “Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects,” Space Sci. Rev. 168 (1-4), 475–516 (2012).

    Article  ADS  Google Scholar 

  3. V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrooptical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].

    Google Scholar 

  4. V. A. Sadovnichii, M. I. Panasyuk, A. M. Amelyushkin, V. V. Bogomolov, V. V. Benghin, G. K. Garipov, V. V. Kalegaev, P. A. Klimov, B. A. Khrenov, V. L. Petrov, S. A. Sharakin, A. V. Shirokov, S. I. Svertilov, M. Y. Zotov, I. V. Yashin, E. S. Gorbovskoy, V. M. Lipunov, I. H. Park, J. S. Lee, M. B. Jeong, H. M. Kim, Y. Y. Jeong, V. Shprits, C. T. Angelopoulos, A. Russell, D. Runov, R. J. Turner, R. Strangeway, S. Caron, A. Biktemerova, M. Grinyuk, L. Lavrova, A. Tkachev, O. Tkachenko, H. Martinez, and E. Salazar, “Ponce “Lomonosov” satellite-space observatory to study extreme phenomena in space,” Space Sci. Rev. 212 (3), 1705 (2017).

    Article  ADS  Google Scholar 

  5. O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, “Profuse activity of blue electrical discharges at the tops of thunderstorms,” Geophys. Rev. Lett. 44 (1), 496–503 (2017).

    Article  ADS  Google Scholar 

  6. A. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana 30 (3), 243–253 (2017).

    Article  Google Scholar 

  7. E. A. Sosnin, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Ministarters and mini blue jets in air and nitrogen at a pulse-periodic discharge in a laboratory experiment,” JETP Lett. 105 (10), 641–645 (2017).

    Article  ADS  Google Scholar 

  8. A. Robledo-Martinez, A. Garcia-Villarreal, and H. Sobral, “Comparison between low-pressure laboratory discharges and atmospheric sprites,” J. Geophys. Res.: Space Phys. 22 (1), 948–962 (2017).

    Article  ADS  Google Scholar 

  9. Y. P. Raizer, G. M. Milikh, and M. N. Shneider, “On the mechanism of blue jet formation and propagation,” Geophys. Rev. Lett. 33 (23), L23801 (2006).

  10. R. Roussel-Dupre, J. J. Colman, E. Symbalisty, D. Sentman, and V. P. Pasko, “Physical processes related to discharges in planetary atmospheres,” Space Sci. Rev. 137 (2008).

    Article  ADS  Google Scholar 

  11. G. V. Naidis, “Positive and negative streamers in air: Velocity-diameter relation,” Phys. Rev. E 79 (5), 057401 (2009).

    Article  ADS  Google Scholar 

  12. N. A. Popov, M. N. Shneider, and G. M. Milikh, “Similarity analysis of the streamer zone of blue jets,” J. Atmos. Sol.-Terr. Phys. 147, 121–125 (2015).

    Article  ADS  Google Scholar 

  13. Yu. P. Raizer, Gas Discharge Physics (Intellekt, Dolgoprudnyi, 2009) [in Russian].

  14. E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, V. S. Skakun, V. A. Panarin, N. Yu. Babaeva, E. Kh. Baksht, and V. S. Kuznetsov, “Apokamps produced by repetitive discharges in air,” Phys. Plasmas 25 (8), 083513 (2018).

    Article  ADS  Google Scholar 

  15. E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, V. S. Skakun, V. A. Panarin, and N. Y. Babaeva, “On the physical nature of apokampic discharge,” J. Exp. Theor. Phys. 125 (5), 920–925 (2017).

    Article  ADS  Google Scholar 

  16. L. Leb, Main Electrical Discharges Processes in Gases (Gosizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  17. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26 (5), 449–454 (2013).

    Article  Google Scholar 

  18. T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V. Kozyrev, and V. Y. Kozhevnikov, “Runaway electrons and X-rays from a corona discharge in atmospheric pressure air,” New J. Phys. 13 ((20), 113035 (2011).

    Article  ADS  Google Scholar 

  19. V. F. Tarasenko, E. Kh. Baksht, E. A. Sosnin, A. G. Burachenko, V. A. Panarin, and V. S. Skakun, “Characteristics of a pulse-periodic corona discharge in atmospheric air,” Plasma Phys. Rep. 44 (5), 520–532 (2018).

    Article  ADS  Google Scholar 

  20. G. V. Naidis, E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Dynamics and structure of nonthermal atmospheric-pressure air plasma jets: Experiment and simulation,” IEEE Trans. Plasma Sci. 44 (12), 3249 (2016).

    Article  ADS  Google Scholar 

  21. V. F. Tarasenko, E. A. Sosnin, V. S. Skakun, V. A. Panarin, M. V. Trigub, and G. S. Evtushenko, “Dynamics of apokamp-type atmospheric pressure plasma jets initiated in air by repetitive pulsed discharge,” Phys. Plasmas 24 (4), 043514 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.G. Russkikh and D.S. Pechenitsyn for their help in the work.

Funding

The work was performed under the State Assignment of the Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, theme no. 13.1.4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Kuznetsov or V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.S., Tarasenko, V.F., Panarin, V.A. et al. The Initial Stage of Diffuse Jet Formation in a Pulsed Discharge with a Non-Uniform Electric Field in Air. Atmos Ocean Opt 32, 607–611 (2019). https://doi.org/10.1134/S1024856019050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019050105

Keywords:

Navigation