Atmospheric and Oceanic Optics

, Volume 32, Issue 5, pp 551–554 | Cite as

Manifestation of Equatorial Processes in Water Vapor Variations over Europe

  • O. G. KhutorovaEmail author
  • V. E. KhutorovEmail author
  • G. M. TeptinEmail author


We studied the variations in time series of the near-surface water vapor partial pressure on the territory of Europe over a multiyear period. It is found that the contribution of fluctuations on time scales from 2 to 5 years is from 35 to 60% of the variance of the interannual variations. The spatial dependences of the local coherence between harmonics on 2–4 scales of Niño3.4 index and the water partial pressure in Europe are determined. We determined that the correlation of these variations reaches 0.7–0.9. It is shown that westward-propagating planetary waves play a significant role in energy transfer from equatorial regions to midlatitudes. This energy begins to increase in the winter of an El Niño year and reaches the maximum a year later.


near-surface water vapor partial pressure El Niño – Southern Oscillation planetary waves 



This work was supported by the Russian Foundation for Basic Research (project no. 17-05-00863).


The authors declare that they have no conflicts of interest.


  1. 1.
    M. V. Panchenko, S. A. Terpugova, V. S. Kozlov, V. V. Pol’kin, and E. P. Yausheva, “Annual behavior of the condensation activity of submicron aerosol in the atmospheric surface layer of Western Siberia,” Atmos. Ocean. Opt. 18 (8), 607–611 (2005).Google Scholar
  2. 2.
    G. A. Schmidt, R. A. Ruedy, R. L. Miller, and A. A. Lacis, “Attribution of the present day total greenhouse effect,” J. Geophys. Res. 115 (D20106), 1–6 (2010).Google Scholar
  3. 3.
    V. N. Malinin, S. M. Gordeeva, and L. M. Naumov, “Total precipitable water of the atmosphere as a climate forcing factor,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 15 (3), 243–251 (2018).CrossRefGoogle Scholar
  4. 4.
    J. Morland, CoenM. Collaud, and K. Hocke, “Tropospheric water vapor above Switzerland over the last 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. P. Perevedentsev, A. A. Vasil’ev, K. M. Shantalinskii, and V. V. Gur’yanov, “Long-term variations in surface air pressure and surface air temperature in the Northern hemisphere mid-latitudes, Rus. Meteorol. Hydrol. 42 (7), 461–470 (2017).CrossRefGoogle Scholar
  6. 6.
    O. G. Khutorova, V. E. Khutorov, and G. M. Teptin, “Interannual variability of surface and integrated water vapor and atmospheric circulation in Europe,” Atmos. Oceanic Opt. 31 (5), 486–491 (2018).CrossRefGoogle Scholar
  7. 7.
    I. Herceg-Bulic, B. Mezzina, F. Kucharski, P. Ruggieri, and M. P. King, “Wintertime ENSO influence on late spring European climate: The stratospheric response and the role of North Atlantic SST,” J. Climatol. 37 ((S1)), 87–108 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Timmermann, An Soon-Il, Jong-Seong Kug, Fei-Fei Jin, Wenju Cai, A. Capotondi, Kim M. Cobb, M. Lengaigne, M. J. McPhaden, M. F. Stuecker, K. Stein, A. T. Wittenberg, Kyung-Sook Yun, T. Bayr, Han-Ching Chen, Y. Chikamoto, B. Dewitte, D. Dommenget, P. Grothe, E. Guilyardi, Yoo-Geun Ham, M. Hayashi, S. Ineson, Daehyun Kang, Sunyong Kim, WonMoo Kim, June-Yi Lee, Tim Li, Jing-Jia Luo, S. McGregor, Y. Planton, S. Power, H. Rashid, Hong-Li Ren, A. Santoso, K. Takahashi, A. Todd, Guomin Wang, Guojian Wang, Ruihuang Xie, Woo-Hyun Yang, Sang-Wook Yeh, Jinho Yoon, E. Zeller, Xuebin Zhang, “El Niño—Southern Oscillation complexity,” Nature 559, 535–545 (2018).ADSCrossRefGoogle Scholar
  9. 9. MJO/ analysis_monitoring/ensostuff/ONI_v5.php (Cited November 25, 2018).Google Scholar
  10. 10. (Cited November 25, 2018).Google Scholar
  11. 11. (Cited November 25, 2018).Google Scholar
  12. 12.
    P. Llamedo, R. Hierro, A. de la Torre, and P. Alexander, “ENSO-related moisture and temperature anomalies over South America derived from GPS radio occultation profiles,” J. Climatol. 37, 268–275 (2017).CrossRefGoogle Scholar
  13. 13.
    O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).CrossRefGoogle Scholar
  14. 14.
    G. Dzhenkins and D. Vatts, Spectral Analysis and Its Applications. Vol. 1 and 2 (Mir, Moscow, 1971) [in Russian].Google Scholar
  15. 15.
    G. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79 (1), 61–78 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Bezverkhnii, “Development of the wavelet-transform method for the analysis of geophysical data,” Izv. Akad. Nauk. Fiz. Atmos. Okeana. 37 (5), 630–638 (2001).MathSciNetGoogle Scholar
  17. 17.
    I. I. Mokhov and D. A. Smirnov, “Study of the mutual influence of the El Niño-Southern Oscillation processes and the North Atlantic and Arctic Oscillations,” Izv., Atmos. Ocean. Phys. 42 (5), 598–614 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Jevrejeva, J. C. Moore, and A. Grinsted, “Oceanic and atmospheric transport of multiyear El Nino—Southern Oscillation (ENSO) signatures to the polar regions,” Geophys. Rev. Lett. 31, L24210 (2004).Google Scholar
  19. 19.
    V. V. Gur’yanov, A. V. Eliseev, I. I. Mokhov, and Yu. P. Perevedentsev, “Wave activity and its changes in the troposphere and stratosphere of the Northern hemisphere in winters of 1979–2016,” Izv., Atmos. Ocean. Phys. 54 (2), 114–126 (2018).CrossRefGoogle Scholar
  20. 20.
    O. G. Khutorova and G. M. Teptin, “Local and planetary scales of wave disturbances for synchronous measurements of atmospheric admixtures,” Dokl. Earth Sci. 400 (1), 89–91 (2005).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations