Features of Operation of a Brightness Amplifier on Copper Bromide Vapors in the Bistatic Scheme of a Laser Monitor

Abstract

The influence of the brightness amplifier operation mode on images formed with a bistatic laser monitor is studied. The bistatic laser monitor is an active optical system with two active elements. A possibility of imaging remote (to more than 5 m) objects with this instrument is evaluated. It is shown that a change in the concentration of active substance (copper bromide) of the amplifier significantly affects the amplification of the input signal. The active substance temperature rise from 480 to 550°C increases the gain throughout the input signal range. A further increase in the temperature (up to 570°C) increases the gain only at a relatively weak input signal (less than 100 mW). The resulting amplification characteristics of the active optical system are described and compared with the parameters of images formed (distortion and brightness).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    G. S. Evtushenko, S. N. Torgaev, M. V. Trigub, D. V. Shiyanov, T. G. Evtushenko, D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes (Nova Publishers, New York, 2018).

    Google Scholar 

  2. 2

    E. I. Asinovskii, V. M. Batenin, I. I. Klimovskii, and V. V. Markovets, “Laser-monitor-assisted investigation of the regions of closure of current on the electrodes of an atmospheric-pressure low-current carbon arc,” High Temperature. 39 (5), 739–752 (2001).

    Article  Google Scholar 

  3. 3

    D. V. Abramov, S. M. Arakelyan, A. F. Galkin, I. I. Klimovskii, A. O. Kucherik, and V. G. Prokoshev, “On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation,” Quantum Electron. 36 (6), 569–571 (2006).

    ADS  Article  Google Scholar 

  4. 4

    M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Ocean. Opt. 29 (4), 376–380 (2016).

    Article  Google Scholar 

  5. 5

    V. G. Prokoshev, D. V. Abramov, S. U. Danilov, S. I. Shishin, A. V. Chizhov, and S. M. Arakelian, “Real time diagnostics of the laser-induced thermochemical processes and nonlinear images on the surface of materials: Experiment and mathematical modeling,” Laser Phys. 11 (11), 1167–1171 (2001).

    Google Scholar 

  6. 6

    O. I. Buzhinskij, N. N. Vasiliev, A. I. Moshkunov, I. A. Slivitskaya, and A. A. Slivitsky, “Copper vapor laser application for surface monitoring of divertor and first wall in ITER,” Fusion Eng. Des 60 (2), 141–155 (2002).

    Article  Google Scholar 

  7. 7

    C. E. Little, Metal Vapor Lasers: Physics, Engineering & Applications (John Willey & Sons, Chichester, 1998).

    Google Scholar 

  8. 8

    V. M. Batenin, V. V. Buchanov, M. A. Kazaryan, I. I. Klimovskii, and E. I. Molodykh, Self-terminating Metal Atom Lasers (Nauchnaya kniga, Moscow, 1998) [in Russian].

  9. 9

    M. V. Trigub, K. V. Fedorov, and G. S. Evtushenko, “Remote object visualization using a laser monitor with a typical pulse duration of CuBr brightness amplifier,” Opt. Atmos. Okeana 8 (9), 850–853 (2015).

    Google Scholar 

  10. 10

    FIAN Proc. Optical Systems with Brightness Amplifiers, Ed. by G.G. Petrash (Nauka, Moscow, 1991), vol. 206 [in Russian].

    Google Scholar 

  11. 11

    V. K. Isakov, M. M. Kalugin, E. N. Parfenova, and S. E. Potapov, “Study of amplification in active media on Mg atom transitions as applied to design of projecting systems with brightness amplifiers,” Zh. Tekh. Fiz. 33 (4), 704–714 (1983).

    Google Scholar 

  12. 12

    K. I. Zemskov, M. A. Kazaryan, V. M. Matveev, G. G. Petrash, M. P. Samsonova, and A. S. Skripnichenko, “Laser machining of objects with simultaneous visual monitoring in a copper vapor oscillator-amplifier system,” Sov. J. Quantum Electron. 14 (2), 288–290 (1984).

    ADS  Article  Google Scholar 

  13. 13

    V. M. Batenin, V. Yu. Glina, I. I. Klimovskii, and L. A. Selezneva, “Application of optical systems with brightness amplifiers for the study of graphite and pyrographite electrode surfaces during arching,” Teplofiz. Vysokikh Temp. 29 (6), 1204–1210 (1991).

    Google Scholar 

  14. 14

    M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, V. O. Troitskii, and D. V. Shiyanov, “A bistatic laser monitor,” JTP Lett. 42 (6), 632–634 (2016).

    Google Scholar 

  15. 15

    C. E. Webb and J. D. C. Jones, Handbook of Laser Technology: Applications (IOP Publishing, Bristol, Philadelphia, 2004).

    Book  Google Scholar 

  16. 16

    V. V. Zubov, N. A. Lyabin, and A. D. Chursin, “Efficient master-oscillator-amplifier system utilizing copper vapor laser active elements,” Sov. J. Quantum Electron. 16 (12), 1606–1610 (1986).

    ADS  Article  Google Scholar 

  17. 17

    N. A. Lyabin, Doctoral Dissertation in Technical Sciences (Bauman Moscow State Technical University, Moscow, 2014).

  18. 18

    N. A. Vasnev, V. V. Taratushkina, and M. V. Trigub, “Digital control circuit for synchronization of two metal vapor lasers,” in Development and application. Proc. the 19th Intern. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (Novosibirsk State Technical University, Novosibirsk, 2018), p. 387–390.

  19. 19

    M. V. Trigub, N. A. Vasnev, G. S. Evtushenko, and V. A. Dimaki, “System for synchronization of pulse-periodic operation of active media on slef-constrained transitions in metal vapors,” Pribory Tech. Exper. No. 1, 30–35 (2019).

    Google Scholar 

  20. 20

    N. A. Vasnev, M. V. Trigub, V. A. Dimaki, G. S. Evtushenko, V. O. Troitskii, and V. V. Vlasov, RF Utility Patent No. 185671.

  21. 21

    G. S. Evtushenko, V. B. Sukhanov, A. I. Chernyshov, and D. V. Shiyanov, RF Patent No. 2243619.

  22. 22

    M. V. Trigub, D. N. Ogorodnikov, and V. A. Dimaki, “Study of metal vapor laser power supply with pulsed charging of storage capacitance,” Opt. Atmos. Okeana 27 (12), 1112–1115 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the head of the Laboratory of Quantum Electronics of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, V.O. Troitskii for useful comments and discussion of the results.

Funding

The work on the study of properties of the bistatic laser monitor operation was supported by the Innovation Promotion Fund (project no. 11846GU/2017). Laser active elements were manufactured within the basic government funding (project no. AAAA-A17-117021310150).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to N. A. Vasnev or M. V. Trigub or G. S. Evtushenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasnev, N.A., Trigub, M.V. & Evtushenko, G.S. Features of Operation of a Brightness Amplifier on Copper Bromide Vapors in the Bistatic Scheme of a Laser Monitor. Atmos Ocean Opt 32, 483–489 (2019). https://doi.org/10.1134/S1024856019040171

Download citation

Keywords:

  • laser monitor
  • bistatic scheme of a laser monitor
  • active filtration
  • imaging
  • brightness amplifiers
  • gain
  • remote objects