Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 387–392 | Cite as

Statistical Simulation of the Characteristics of Diffuse Underwater Optical Communication

  • M. V. TarasenkovEmail author
  • V. V. BelovEmail author
  • E. S. Poznakharev


The impulse response of a diffuse non-line-of-site underwater communication link at a wavelength of 0.5 μm is simulated using a modified double local estimate Monte Carlo algorithm for base distances between the source and receiver from 10 to 100 m. The power of radiation received and the maximal data rate are estimated based on the impulse response.


underwater optical communications NLOS diffuse link Monte-Carlo method 



The authors declare that they have no conflicts of interest.


  1. 1.
    H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE ACCESS 4, 1518–1547 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26 (3), 530–539 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    F. Jasman and R. J. Green, “Monte Carlo simulation for underwater optical wireless communications,” in Proc. 2nd Intern. Workshop on Optical Wireless Communications, 2013. P. 113–117.Google Scholar
  4. 4.
    J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo SIMULATION,” J. Opt. 14 (1), 1–7 (2012).Google Scholar
  5. 5.
    S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEE J. Select. Areas Commun. 26 (9), 1620–1627 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47 (2), 277–283 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5 (1), 1–12 (2013).CrossRefGoogle Scholar
  8. 8.
    C. Gabriel, M. A. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proc. 2011 IEEE Globecom Workshops. P. 833–837.Google Scholar
  9. 9.
    M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in IEEE/RSJ 2010 Intern. Conf. Intelligent Robots and Systems, 2010. P. 4017–4022.Google Scholar
  10. 10.
    B. Neuner and B. M. Pascoguin, “A novel method to optimize the wavelength for underwater free-space optical communications,” Proc. SPIE—Int. Soc. Opt. Eng. 9224 (922417), 1–8 (2014).Google Scholar
  11. 11.
    F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. V. Dalgleish, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53 (051410), 1–14 (2014).CrossRefGoogle Scholar
  12. 12.
    B. Tian, F. Zhang, and X. Tan, “Design and development of a LED-based optical communication system for autonomous underwater robots,” in 2013 IEEE/ASME Intern. Conf. “Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing”. P. 1558–1563.Google Scholar
  13. 13.
    S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun 62 (1), 226–234 (2014).CrossRefGoogle Scholar
  14. 14.
    A. K. Majumdar, J. Siegenthaler, and P. Land, “Analysis of optical communications through the random air-water interface: feasibility for under-water communications,” Proc. SPIE—Int. Soc. Opt. Eng. 8517 (85170T), 1–13 (2012).Google Scholar
  15. 15.
    M. Doniec, M. Angermann, and D. Rus, “An end-to-end signal strength model for underwater optical communications,” IEEE J. Oceanic Eng. 38 (4), 743–757 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    A. Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Path loss analysis of NLOS Underwater Wireless Optical Communication channel,” in 2014 Intern. Conf. on Electronics and Communication Systems. P. 1–4.Google Scholar
  17. 17.
    V. K. Jagadeesh, A. Choudhary, F. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for NLOS underwater wireless optical communications,” in 2014 Fourth Intern. Conf. on Advances in Computing and Communications. P. 77–79.Google Scholar
  18. 18.
    V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs,” Atmos. Ocean. Opt. 30 (4), 366–371 (2017).CrossRefGoogle Scholar
  19. 19.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  20. 20.
    V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).CrossRefGoogle Scholar
  21. 21.
    V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing,” Atmos. Ocean. Opt. 29 (6), 533–540 (2016).CrossRefGoogle Scholar
  22. 22.
    M. V. Tarasenkov and V. V. Belov, “Comparison of the complexity of algorithms for statistical simulation of impulse response of bistatic communication channel on scattered radiation and bistatic laser sensing,” Vychisl. tekhnol. 22 (3), 91–102 (2017).Google Scholar
  23. 23.
    M. V. Tarasenkov, V. V. Belov, and E. S. Poznakharev, “Simulation of information transfer through atmospheric channels of scattered laser radiation propagation,” Atmos. Ocean. Opt. 30 (5), 412–416 (2017).CrossRefGoogle Scholar
  24. 24.
    O. B. Akulova, V. I. Bukatyi, and I. A. Sutorikhin, “The effect of natural water components on spectral light attenuation (water bodies of Altai Krai as a case study,” Opt. Atmos. Okeana 30 (5), 414–419 (2017).Google Scholar
  25. 25.
    A. S. Kukushkin, “Spatial and temporal variability of the water transparency distribution in the north-western Black Sea,” Opt. Atmos. Okeana 30 (9), 750–762 (2017).Google Scholar
  26. 26.
    V. V. Rostovtseva, I. V. Goncharenko, B. V. Konovalov, and A. F. Alukaeva, “Rapid estimation of the ecological state of coastal water areas based on shipboard passive remote optical sensing of the water surface,” Atmos. Ocean. Opt. 31 (3), 225–232 (2018).CrossRefGoogle Scholar
  27. 27.
    A. S. Zapevalov, “Determination of the statistical moments of sea-surface slopes by optical scanners,” Atmos. Ocean. Opt. 31 (1), 91–95 (2018).CrossRefGoogle Scholar
  28. 28.
    Ocean and Atmospheric Optics, Ed. by K.S. Shifrin (Nauka, Moscow, 1981) [in Russian].Google Scholar
  29. 29.
    Ocean Optics. Vol. 1. Physical Optics of Ocean, Ed. by A.S. Monin (Nauka, Moscow, 1983) [in Russian].Google Scholar
  30. 30.
    Ocean Optics. Vol. 2. Applied Optics of Ocean, Ed. by A.S. Monin (Nauka, Moscow, 1983) [in Russian].Google Scholar
  31. 31.
    D. Haipeng, G. Chen, K. Arun, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Select. Areas Commun. 27 (9), 1535–1544 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations