Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 375–377 | Cite as

Contribution of Errors in Line Parameters to the Retrieval of the Vapor Continuum Absorption within 0.94- and 1.13-µm Bands

  • A. A. SimonovaEmail author
  • I. V. PtashnikEmail author
SPECTROSCOPY OF AMBIENT MEDIUM
  • 6 Downloads

Abstract

The retrieved continuum absorption spectra in pure water vapor within near-IR bands 0.94 and 1.13 µm (10 600 and 8800 cm–1) are studied. The continuum is defined as a difference between the water vapor absorption spectra measured using a Fourier transform spectrometer and model absorption spectra of water monomers calculated using the HITRAN2016 database. The maximal error in the continuum absorption coefficients retrieved, caused by uncertainties of spectral line parameters in HITRAN2016, is estimated. It is shown that this error exceeds other error types within the absorption bands under study.

Keywords:

continuum absorption water vapor spectral line parameters absorption bands near-IR spectral range 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    G. Hettner, “Uber Das Ultrarote Absorptionsspektrum Des Wasserdampfes,” Ann. Phys. (New York) 360, 476–496 (1918).ADSGoogle Scholar
  2. 2.
    A. A. Simonova, R. McPheat, I. V. Ptashnik, K. M. Smith, and K. P. Shain, “Features of the water vapour continuum absorption in 0.94 and 1.13 μm bands,” Opt. Atmos. Okeana 28 (10), 867–871 (2015).Google Scholar
  3. 3.
    A. A. Simonova and I. V. Ptashnik, “Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).Google Scholar
  4. 4.
    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, AuweraJ. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 203 (1), 3–69 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. J. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 10, 23345–23380 (2011).CrossRefGoogle Scholar
  6. 6.
    E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. R. Soc. A 370, 2520–2556 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations