Algorithm for Interpreting Light Backscattering Matrices of Cirrus Clouds for the Retrieval of Their Microphysical Parameters

Abstract

An algorithm for interpreting light backscattering matrices (LBSMs) obtained experimentally on the unique high-altitude polarization lidar of the National Research Tomsk State University in the process of cirrus cloud sounding is described. In terms of the database of LBSMs calculated theoretically within the framework of the physical optics approximation, microphysical characteristics of cirrus clouds such as the particle size, orientation, and shape, as well as the percentage of particles with different shapes, are estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    G. L. Stephens, S.-C. Tsay, Jr. P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47 (14), 1742–1754 (1990).

    ADS  Article  Google Scholar 

  2. 2

    G. Hong, “Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies,” J. Geophys. Res. 112, D11208 (2007).

    ADS  Article  Google Scholar 

  3. 3

    Y. Takano and K.-N. Liou, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52 (7), 818–837 (1995).

    ADS  Article  Google Scholar 

  4. 4

    I. V. Samokhvalov, “Effect of orientation of ice crystals in cirrus on direct and scattered solar radiation fluxes,” Rus. Phys. J. 60 (11), 2004–2006 (2018).

    Article  Google Scholar 

  5. 5

    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012).

    ADS  Article  Google Scholar 

  6. 6

    I. V. Samokhvalov, S. V. Nasonov, A. P. Stykon, I. D. Bryukhanov, A. G. Borovoi, S. N. Volkov, N. V. Kustova, and A. V. Konoshonkin, “Investigation of phase matrices of cirrus containing ensembles of oriented ice particles,” Proc. SPIE—Int. Soc. Opt. Eng. 9292 (2014). https://doi.org/10.1117/12.2075562

  7. 7

    B. V. Kaul’ and I. V. Samokhvalov, “Theory and experimental results on laser sensing of oriented crystal particles in clouds,” Atmos. Ocean. Opt. 18 (12), 945–950 (2005).

  8. 8

    D. N. Romashov, B. V. Kaul’, and I. V. Samokhvalov, “Data bank for interpreting results of polarization sensing of crystalline clouds,” Atmos. Ocean. Opt. 13 (9), 794–800 (2000).

    Google Scholar 

  9. 9

    I. V. Samokhvalov, S. M. Bobrovnikov, P. P. Geiko, A. V. El’nikov, and B. V. Kaul’, “Development of Tomsk State University lidar as a unique complex for atmospheric monitoring,” Atmos. Ocean. Opt. 19 (11), 895–898 (2006).

    Google Scholar 

  10. 10

    I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A. G. Borovoi, B. V. Kaul’, N. V. Kustova, and A.  V. Konoshonkin, “Estimation of microstructure parameters of cirrus clouds with abnormal backscattering with a polarization lidar,” in Proc. the 23th Intern. Conf. “Lasers. Measurements. Information” (Publishing House of Polytechnical University, SPb., 2013), p. 295–307 [in Russian].

  11. 11

    A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, V. A. Shishko, and E. Grin’ko, “Solution of the light scattering problem by a hexagonal ice particle within the dda, discontinuous Galerkin time domain and physical-optics methods,” Izv. Vyssh. Ucheb. Zaved. Fiz. 59 (12-2), 156–159 (2016).

  12. 12

    Z. Wang, V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, G. G. Matvienko, Ch. Xie, D. Liu, and Y. Wang, “The study of cirrus clouds with the polarization lidar in the South-East China (Hefei),” Atmos. Oceanic Opt. 30 (3), 234–235 (2017).

    Article  Google Scholar 

  13. 13

    ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/. Cited October 7, 2018.

  14. 14

    S. Kox, L. Bugliaro, and A. Ostler, “Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing,” Atmos. Meas. Tech. 7 (10), 3233–3246 (2014).

    Article  Google Scholar 

  15. 15

    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  16. 16

    H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115 (22), D22209 (2010).

    ADS  Article  Google Scholar 

  17. 17

    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18 (11), 866–870 (2005).

  18. 18

    K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals,” J. Geophys. Res. 111 (22), D22213 (2006).

    ADS  Article  Google Scholar 

  19. 19

    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51, 817–832 (1994).

    ADS  Article  Google Scholar 

  20. 20

    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).

    ADS  Article  Google Scholar 

  21. 21

    A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Oceanic Opt. 29 (3), 252–262 (2016).

    Article  Google Scholar 

  22. 22

    A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59 (24), 3457–3491 (2002).

    ADS  Article  Google Scholar 

  23. 23

    B. V. Kaul’ and I. V. Samokhvalov, “Physical factors determining the particle spatial orientation in ice clouds,” Atmos. Oceanic Opt. 21 (1), 20–26 (2008).

  24. 24

    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation,” Atmos. Oceanic Opt. 19 (1), 38–42 (2006).

  25. 25

    V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 1046646 (2017).

  26. 26

    V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Influence of cirrus clouds ice crystal’s deformation on the backscattering matrix calculated within the physical optics approximation,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100353 (2016).

  27. 27

    A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22341–22346 (2017).

    ADS  Article  Google Scholar 

  28. 28

    I. V. Samokhvalov, B. V. Kaul, V. V. Bryukhanova, A. A. Doroshkevich, E. P. Zege, L. I. Chaikovskaya, and A. V. Malinka, “Correction for distortions in lidar measurements of cloud backscattering phase matrices caused by multiple scattering,” Russ. Phys. J. 51 (9), 958–964 (2008).

    Article  Google Scholar 

  29. 29

    J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15 (7), 3933–3956 (2015).

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (agreement no. 18-77-10 035) in regard to solving the problem for chaotic and symmetric hexagonal ice particles, the Russian Foundation for Basic Research (project nos. 18-05-00568 and 18-55-53 046), the Tomsk State University D. I. Mendeleev Foundation Program, and the Tomsk State University Competitiveness Improvement Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. A. Shishko or I. D. Bryukhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shishko, V.A., Bryukhanov, I.D., Nie, E.V. et al. Algorithm for Interpreting Light Backscattering Matrices of Cirrus Clouds for the Retrieval of Their Microphysical Parameters. Atmos Ocean Opt 32, 393–399 (2019). https://doi.org/10.1134/S1024856019040134

Download citation

Keywords:

  • light backscattering matrices
  • ice crystals
  • cirrus clouds
  • physical optics approximation
  • polarization lidar