Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 393–399 | Cite as

Algorithm for Interpreting Light Backscattering Matrices of Cirrus Clouds for the Retrieval of Their Microphysical Parameters

  • V. A. ShishkoEmail author
  • I. D. BryukhanovEmail author
  • E. V. Nie
  • N. V. Kustova
  • D. N. Timofeev
  • A. V. Konoshonkin


An algorithm for interpreting light backscattering matrices (LBSMs) obtained experimentally on the unique high-altitude polarization lidar of the National Research Tomsk State University in the process of cirrus cloud sounding is described. In terms of the database of LBSMs calculated theoretically within the framework of the physical optics approximation, microphysical characteristics of cirrus clouds such as the particle size, orientation, and shape, as well as the percentage of particles with different shapes, are estimated.


light backscattering matrices ice crystals cirrus clouds physical optics approximation polarization lidar 



This work was supported by the Russian Science Foundation (agreement no. 18-77-10 035) in regard to solving the problem for chaotic and symmetric hexagonal ice particles, the Russian Foundation for Basic Research (project nos. 18-05-00568 and 18-55-53 046), the Tomsk State University D. I. Mendeleev Foundation Program, and the Tomsk State University Competitiveness Improvement Program.


The authors declare that they have no conflicts of interest.


  1. 1.
    G. L. Stephens, S.-C. Tsay, Jr. P. W. Stackhouse, and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47 (14), 1742–1754 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    G. Hong, “Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies,” J. Geophys. Res. 112, D11208 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Takano and K.-N. Liou, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52 (7), 818–837 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    I. V. Samokhvalov, “Effect of orientation of ice crystals in cirrus on direct and scattered solar radiation fluxes,” Rus. Phys. J. 60 (11), 2004–2006 (2018).CrossRefGoogle Scholar
  5. 5.
    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Samokhvalov, S. V. Nasonov, A. P. Stykon, I. D. Bryukhanov, A. G. Borovoi, S. N. Volkov, N. V. Kustova, and A. V. Konoshonkin, “Investigation of phase matrices of cirrus containing ensembles of oriented ice particles,” Proc. SPIE—Int. Soc. Opt. Eng. 9292 (2014).
  7. 7.
    B. V. Kaul’ and I. V. Samokhvalov, “Theory and experimental results on laser sensing of oriented crystal particles in clouds,” Atmos. Ocean. Opt. 18 (12), 945–950 (2005).Google Scholar
  8. 8.
    D. N. Romashov, B. V. Kaul’, and I. V. Samokhvalov, “Data bank for interpreting results of polarization sensing of crystalline clouds,” Atmos. Ocean. Opt. 13 (9), 794–800 (2000).Google Scholar
  9. 9.
    I. V. Samokhvalov, S. M. Bobrovnikov, P. P. Geiko, A. V. El’nikov, and B. V. Kaul’, “Development of Tomsk State University lidar as a unique complex for atmospheric monitoring,” Atmos. Ocean. Opt. 19 (11), 895–898 (2006).Google Scholar
  10. 10.
    I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A. G. Borovoi, B. V. Kaul’, N. V. Kustova, and A.  V. Konoshonkin, “Estimation of microstructure parameters of cirrus clouds with abnormal backscattering with a polarization lidar,” in Proc. the 23th Intern. Conf. “Lasers. Measurements. Information” (Publishing House of Polytechnical University, SPb., 2013), p. 295–307 [in Russian].Google Scholar
  11. 11.
    A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, V. A. Shishko, and E. Grin’ko, “Solution of the light scattering problem by a hexagonal ice particle within the dda, discontinuous Galerkin time domain and physical-optics methods,” Izv. Vyssh. Ucheb. Zaved. Fiz. 59 (12-2), 156–159 (2016).Google Scholar
  12. 12.
    Z. Wang, V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, G. G. Matvienko, Ch. Xie, D. Liu, and Y. Wang, “The study of cirrus clouds with the polarization lidar in the South-East China (Hefei),” Atmos. Oceanic Opt. 30 (3), 234–235 (2017).CrossRefGoogle Scholar
  13. 13. Cited October 7, 2018.Google Scholar
  14. 14.
    S. Kox, L. Bugliaro, and A. Ostler, “Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing,” Atmos. Meas. Tech. 7 (10), 3233–3246 (2014).CrossRefGoogle Scholar
  15. 15.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  16. 16.
    H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115 (22), D22209 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Oceanic Opt. 18 (11), 866–870 (2005).Google Scholar
  18. 18.
    K. Sato and H. Okamoto, “Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals,” J. Geophys. Res. 111 (22), D22213 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51, 817–832 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning,” Atmos. Oceanic Opt. 29 (3), 252–262 (2016).CrossRefGoogle Scholar
  22. 22.
    A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59 (24), 3457–3491 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    B. V. Kaul’ and I. V. Samokhvalov, “Physical factors determining the particle spatial orientation in ice clouds,” Atmos. Oceanic Opt. 21 (1), 20–26 (2008).Google Scholar
  24. 24.
    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation,” Atmos. Oceanic Opt. 19 (1), 38–42 (2006).Google Scholar
  25. 25.
    V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 1046646 (2017).Google Scholar
  26. 26.
    V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Influence of cirrus clouds ice crystal’s deformation on the backscattering matrix calculated within the physical optics approximation,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100353 (2016).Google Scholar
  27. 27.
    A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22341–22346 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    I. V. Samokhvalov, B. V. Kaul, V. V. Bryukhanova, A. A. Doroshkevich, E. P. Zege, L. I. Chaikovskaya, and A. V. Malinka, “Correction for distortions in lidar measurements of cloud backscattering phase matrices caused by multiple scattering,” Russ. Phys. J. 51 (9), 958–964 (2008).CrossRefGoogle Scholar
  29. 29.
    J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15 (7), 3933–3956 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Shishko
    • 1
    Email author
  • I. D. Bryukhanov
    • 2
    Email author
  • E. V. Nie
    • 2
  • N. V. Kustova
    • 1
  • D. N. Timofeev
    • 1
  • A. V. Konoshonkin
    • 1
    • 2
  1. 1. V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations