Estimation of Microphysical Characteristics of Contrails by Polarization Lidar Data: Theory and Experiment

Abstract

The technique and results of the study of optical and microphysical characteristics of contrails with the use of the unique high-altitude polarization lidar of the National Research Tomsk State University are described. The microstructure parameters of ensembles of crystalline particles were estimated by comparing elements of light backscattering matrices calculated theoretically and obtained experimentally. It is shown that the condensation trail appearing in the atmosphere behind the plane 30–40 min after the emission of fuel combustion products from the engines consists of small chaotically oriented ice particles, mostly of the column shape.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    V. G. Gorshkov, Yu. A. Dovgalyuk, and L. S. Ivlev, Physical Grounds for the Ecology (S.-Pb. University, SPb., 2005) [in Russian].

  2. 2

    P. Minnis, D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith, Jr., and R. Palikonda, “Transformation of contrails into cirrus during SUCCESS,” Geophys. Res. Lett. 25 (8), 1156–1160 (1998).

    ADS  Google Scholar 

  3. 3

    Radiative Properties of Cirrus Clouds, Ed. by E.M. Feigel’son (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  4. 4

    A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24566–24573 (2014).

    ADS  Article  Google Scholar 

  5. 5

    K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), p. 2103–2112 (2001).

    ADS  Article  Google Scholar 

  6. 6

    H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2014).

    ADS  Article  Google Scholar 

  7. 7

    I. V. Samokhvalov, I. D. Bryukhanov, S. V. Nasonov, I. V. Zhivotenyuk, and A. P. Stykon, “Investigation of the optical characteristics of cirrus clouds with anomalous backscattering,” Russ. Phys. J. 55 (8), 925–929 (2013).

    Article  Google Scholar 

  8. 8

    I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana. 25 (5), 403–411 (2012).

    Google Scholar 

  9. 9

    O. V. Sokovykh and I. V. Samokhvalov, “System integration of experimental equipment for high-altitude polarization lidar,” Opt. Atmos. Okeana. 26 (10), 891–896 (2013).

    Google Scholar 

  10. 10

    B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 16 (4), 325–332 (2003).

    Google Scholar 

  11. 11

    B. V. Kaul’ and I. V. Samokhvalov, “Polarization lidar measurements of atmospheric aerosol parameters,” in Regional Atmospheric Monitoring. Part 2. Mew Instruments and Measurement Techniques (Spektr, Tomsk, 1997), p. 34–58 [in Russian].

  12. 12

    S. N. Volkov, B. V. Kaul’, and I. V. Samokhvalov, “A technique for processing lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 15 (11), 891–895 (2002).

    Google Scholar 

  13. 13

    I. V. Samokhvalov, S. N. Volkov, and I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2016662035 of October 28, 2016.

  14. 14

    I. V. Samokhvalov, S. V. Nasonov, A. P. Stykon, I. D. Bryukhanov, A. G. Borovoi, S. N. Volkov, N. V. Kustova, and A. V. Konoshonkin, “Investigation of phase matrices of cirrus containing ensembles of oriented ice particles,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92922 (2014).

  15. 15

    I. V. Samokhvalov, B. V. Kaul, V. V. Bryukhanova, A. A. Doroshkevich, E. P. Zege, L. I. Chaikovskaya, and A. V. Malinka, “Correction for distortions in lidar measurements of cloud backscattering phase matrices caused by multiple scattering,” Russ. Phys. J. 5 (9), 958–964 (2008).

    Article  Google Scholar 

  16. 16

    A. A. Doroshkevich and V. V. Bryukhanova, “On the effect of cloud microstructure on the polarization characteristics of double scattering lidar return,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968053 (2015).

  17. 17

    I. V. Samokhvalov, S. N. Volkov, and I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2017611252 of February 1, 2017.

  18. 18

    B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43 (36), 6620–6628 (2004).

    ADS  Article  Google Scholar 

  19. 19

    http://weather.uwyo.edu. Cited on December 5, 2018.

  20. 20

    I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2019610524 of January 11, 2019.

  21. 21

    I. V. Samokhvalov, I. D. Bryukhanov, I. V. Zhivotenyuk, S. V. Nasonov, N. S. Kirillov, and A. P. Stykon, “Determination of the light backscattering matrices of a condensed aircraft trail,” in Proc. XXII Inter. Sump. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016), p. C465–C468 [in Russian].

  22. 22

    I. V. Samokhvalov, I. D. Bryukhanov, I. V. Zhivotenyuk, E. V. Ni, and A. P. Stykon, “Optical parameters of condensed aircraft trails,” in Proc. XXIV Inter. Sump. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018), p. C358–C361 [in Russian].

  23. 23

    www.flightradar24.com. Cited December 5, 2018.

  24. 24

    I. D. Bryukhanov, “Problem of interpretation of laser sounding data on condensed aircraft trails: Estimation of meteoparameter,” Tr. Voenno-Kosmicheskoi Akademii im. A.F. Mozhaiskogo. Is. 662, 102–106 (2018).

    Google Scholar 

  25. 25

    ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/Quasi-horisontally_oriented_plate. Cited December 5, 2018.

  26. 26

    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–2823 (2012).

    ADS  Article  Google Scholar 

  27. 27

    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51 (6), 817–832 (1994).

    ADS  Article  Google Scholar 

  28. 28

    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).

    ADS  Article  Google Scholar 

  29. 29

    V. A. Shishko, I. D. Bryukhanov, E. V. Ni, N. V. Kustova, D. N. Timofeev, and A. V. Konoshonkin, “Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters,” Atmos. Ocean. Opt. 32 (4), 393–399 (2019).

  30. 30

    J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15 (7), 3933–3956 (2015).

    ADS  Article  Google Scholar 

  31. 31

    I. V. Samokhvalov, I. V. Bryukhanov, P. Soojin, I. V. Zhivotenyuk, E. V. Ni, and A. P. Stykon, “Optical characteristics of contrails according to polarization lidar sensing data,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108335 (2018).

Download references

Funding

This work was supported by the Tomsk State University D. I. Mendeleev Foundation Program and the Tomsk State University Competitiveness Improvement Program for 2013–2020. Calculations of the optical model were supported by the Russian Foundation for Basic Research (project nos. 18-05-00568 and 18-55-53 046). Interpretation of the lidar data was supported by the Russian Science Foundation (agreement no. 18-77-10 035).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to I. V. Samokhvalov or A. V. Konoshonkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samokhvalov, I.V., Bryukhanov, I.D., Shishko, V.A. et al. Estimation of Microphysical Characteristics of Contrails by Polarization Lidar Data: Theory and Experiment. Atmos Ocean Opt 32, 400–409 (2019). https://doi.org/10.1134/S1024856019040122

Download citation

Keywords:

  • contrails
  • polarization lidar
  • backscattering phase matrix