Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 400–409 | Cite as

Estimation of Microphysical Characteristics of Contrails by Polarization Lidar Data: Theory and Experiment

  • I. V. SamokhvalovEmail author
  • I. D. Bryukhanov
  • V. A. Shishko
  • N. V. Kustova
  • E. V. Nie
  • A. V. KonoshonkinEmail author
  • O. Yu. Loktyushin
  • D. N. Timofeev


The technique and results of the study of optical and microphysical characteristics of contrails with the use of the unique high-altitude polarization lidar of the National Research Tomsk State University are described. The microstructure parameters of ensembles of crystalline particles were estimated by comparing elements of light backscattering matrices calculated theoretically and obtained experimentally. It is shown that the condensation trail appearing in the atmosphere behind the plane 30–40 min after the emission of fuel combustion products from the engines consists of small chaotically oriented ice particles, mostly of the column shape.


contrails polarization lidar backscattering phase matrix 



This work was supported by the Tomsk State University D. I. Mendeleev Foundation Program and the Tomsk State University Competitiveness Improvement Program for 2013–2020. Calculations of the optical model were supported by the Russian Foundation for Basic Research (project nos. 18-05-00568 and 18-55-53 046). Interpretation of the lidar data was supported by the Russian Science Foundation (agreement no. 18-77-10 035).


The authors declare that they have no conflicts of interest.


  1. 1.
    V. G. Gorshkov, Yu. A. Dovgalyuk, and L. S. Ivlev, Physical Grounds for the Ecology (S.-Pb. University, SPb., 2005) [in Russian].Google Scholar
  2. 2.
    P. Minnis, D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith, Jr., and R. Palikonda, “Transformation of contrails into cirrus during SUCCESS,” Geophys. Res. Lett. 25 (8), 1156–1160 (1998).ADSGoogle Scholar
  3. 3.
    Radiative Properties of Cirrus Clouds, Ed. by E.M. Feigel’son (Nauka, Moscow, 1989) [in Russian].Google Scholar
  4. 4.
    A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24566–24573 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), p. 2103–2112 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    I. V. Samokhvalov, I. D. Bryukhanov, S. V. Nasonov, I. V. Zhivotenyuk, and A. P. Stykon, “Investigation of the optical characteristics of cirrus clouds with anomalous backscattering,” Russ. Phys. J. 55 (8), 925–929 (2013).CrossRefGoogle Scholar
  8. 8.
    I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana. 25 (5), 403–411 (2012).Google Scholar
  9. 9.
    O. V. Sokovykh and I. V. Samokhvalov, “System integration of experimental equipment for high-altitude polarization lidar,” Opt. Atmos. Okeana. 26 (10), 891–896 (2013).Google Scholar
  10. 10.
    B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 16 (4), 325–332 (2003).Google Scholar
  11. 11.
    B. V. Kaul’ and I. V. Samokhvalov, “Polarization lidar measurements of atmospheric aerosol parameters,” in Regional Atmospheric Monitoring. Part 2. Mew Instruments and Measurement Techniques (Spektr, Tomsk, 1997), p. 34–58 [in Russian].Google Scholar
  12. 12.
    S. N. Volkov, B. V. Kaul’, and I. V. Samokhvalov, “A technique for processing lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 15 (11), 891–895 (2002).Google Scholar
  13. 13.
    I. V. Samokhvalov, S. N. Volkov, and I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2016662035 of October 28, 2016.Google Scholar
  14. 14.
    I. V. Samokhvalov, S. V. Nasonov, A. P. Stykon, I. D. Bryukhanov, A. G. Borovoi, S. N. Volkov, N. V. Kustova, and A. V. Konoshonkin, “Investigation of phase matrices of cirrus containing ensembles of oriented ice particles,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92922 (2014).Google Scholar
  15. 15.
    I. V. Samokhvalov, B. V. Kaul, V. V. Bryukhanova, A. A. Doroshkevich, E. P. Zege, L. I. Chaikovskaya, and A. V. Malinka, “Correction for distortions in lidar measurements of cloud backscattering phase matrices caused by multiple scattering,” Russ. Phys. J. 5 (9), 958–964 (2008).CrossRefGoogle Scholar
  16. 16.
    A. A. Doroshkevich and V. V. Bryukhanova, “On the effect of cloud microstructure on the polarization characteristics of double scattering lidar return,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968053 (2015).Google Scholar
  17. 17.
    I. V. Samokhvalov, S. N. Volkov, and I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2017611252 of February 1, 2017.Google Scholar
  18. 18.
    B. V. Kaul, I. V. Samokhvalov, and S. N. Volkov, “Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar,” Appl. Opt. 43 (36), 6620–6628 (2004).ADSCrossRefGoogle Scholar
  19. 19. Cited on December 5, 2018.Google Scholar
  20. 20.
    I. D. Bryukhanov, Certificate of the State Registration of Computer Program No. 2019610524 of January 11, 2019.Google Scholar
  21. 21.
    I. V. Samokhvalov, I. D. Bryukhanov, I. V. Zhivotenyuk, S. V. Nasonov, N. S. Kirillov, and A. P. Stykon, “Determination of the light backscattering matrices of a condensed aircraft trail,” in Proc. XXII Inter. Sump. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016), p. C465–C468 [in Russian].Google Scholar
  22. 22.
    I. V. Samokhvalov, I. D. Bryukhanov, I. V. Zhivotenyuk, E. V. Ni, and A. P. Stykon, “Optical parameters of condensed aircraft trails,” in Proc. XXIV Inter. Sump. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018), p. C358–C361 [in Russian].Google Scholar
  23. 23. Cited December 5, 2018.Google Scholar
  24. 24.
    I. D. Bryukhanov, “Problem of interpretation of laser sounding data on condensed aircraft trails: Estimation of meteoparameter,” Tr. Voenno-Kosmicheskoi Akademii im. A.F. Mozhaiskogo. Is. 662, 102–106 (2018).Google Scholar
  25. 25. Cited December 5, 2018.Google Scholar
  26. 26.
    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–2823 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation,” J. Atmos. Sci. 51 (6), 817–832 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).ADSCrossRefGoogle Scholar
  29. 29.
    V. A. Shishko, I. D. Bryukhanov, E. V. Ni, N. V. Kustova, D. N. Timofeev, and A. V. Konoshonkin, “Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters,” Atmos. Ocean. Opt. 32 (4), 393–399 (2019).Google Scholar
  30. 30.
    J. Um, G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, “Dimensions and aspect ratios of natural ice crystals,” Atmos. Chem. Phys. 15 (7), 3933–3956 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    I. V. Samokhvalov, I. V. Bryukhanov, P. Soojin, I. V. Zhivotenyuk, E. V. Ni, and A. P. Stykon, “Optical characteristics of contrails according to polarization lidar sensing data,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108335 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Samokhvalov
    • 1
    Email author
  • I. D. Bryukhanov
    • 1
  • V. A. Shishko
    • 2
  • N. V. Kustova
    • 2
  • E. V. Nie
    • 1
  • A. V. Konoshonkin
    • 1
    • 2
    Email author
  • O. Yu. Loktyushin
    • 1
  • D. N. Timofeev
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2. V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations