Formation of Turbulence at Astronomical Observatories in Southern Siberia and North Caucasus

Abstract

The main characteristics of the astroclimate (the structure of turbulent fields and conditions for their formation) are studied for several Russian astronomical observatories in southern Siberia and North Caucasus, including Sayan Solar, Baikal Astrophysical, Special Astrophysical, and Kolyvansky Ridge Observatories and the Center for Laser Atmosphere Sensing of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. The experimental results have been received from long-term astroclimate observations (expeditions in 2006–2017) with the use of small-size ultrasonic weather stations; and theoretical results, from the numerical solution of different boundary problems for the Navier–Stokes equations. The presence of regions with coherent (non-Kolmogorov) turbulence over the observatories has been ascertained, the formation of which is caused by the topography and the nonuniform heating of the underlying surface. Large-scale coherent vortex structures and coherent turbulence have been detected inside dome rooms. Numerical simulation allows us to analyze the influence of design features and temperature regimes of the telescope components and to test the telescope optical characteristics, including the minimization of the effects of external and under-dome turbulence. The paper includes the review of the history and evolution of the “coherent structure” and “coherent turbulence” concepts based on the world scientific literature and our own researches.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. 1

    A. E. Gur’yanov, “Temperature fluctuations in air environment near a telescope in nighttime,” in “Astroclimate and Telescope Efficiency. Proc. of the All-Russian Conference-Workshop “Atroclimate” of the Astronomical Council of the Academy of Sciences of USSR (Abastumani, 1981) (Nauka, Leningrad, 1984), p. 164–168 [in Russian].

  2. 2

    A. Tokovinin, “Where is the surface-layer turbulence?,” Proc. SPIE—Int. Soc. Opt. Eng. 7733, 77331 (2010).

  3. 3

    V. V. Nosov, V. P. Lukin, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, Optical Properties of Turbulence in the Atmospheric Boundary layer in Mountains (Publishing House of Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2016) [in Russian].

  4. 4

    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  5. 5

    V. P. Lukin, Adaptive Atmospheric Optics (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  6. 6

    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Atmospheric Optics. Vol. 5. Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

  7. 7

    V. A. Banakh, V. V. Belov, A. A. Zemlyanov, G. M. Krekov, V. P. Lukin, G. G. Matvienko, V. V. Nosov, A. Ya. Sukhanov, and A. V. Falits, Propagation of Optical Waves through Random Inhomogeneous Nonlinear Media (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].

    Google Scholar 

  8. 8

    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Gidrometeoizdat, Saint Petersburg, 1992), vol. 1 [in Russian].

    Google Scholar 

  9. 9

    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Gidrometeoizdat, Saint Petersburg, 1996), vol. 2 [in Russian].

    Google Scholar 

  10. 10

    A. N. Kolmogorov, “Local turbulence structure in uncompressible viscous fluid at very high Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299–303 (1941).

    ADS  Google Scholar 

  11. 11

    A.N. Kolmogorov, Equations for turbulent motion of uncompressible fluids,” Izv. Akad. Nauk SSSR. Ser. Fiz. 6 (1–2), 56–58 (1942).

    Google Scholar 

  12. 12

    G. Hagen, “Uber Die Bewegung Des Wassers in Cylindrischen, Nahe Horizontalen Leitungen,” in Abh. Akad. Wiss. (Berlin, 1869), p. 1–29.

  13. 13

    O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Proc. Roy. Soc. 35, 84–99 (1883).

    Article  MATH  Google Scholar 

  14. 14

    H. Benard, “Les tourbillons cellulaires dans une nappe liquide,” Rev. Gen. Sci. Pure Appl. 11, 1309–1328 (1900).

    Google Scholar 

  15. 15

    L. Prandtl, “Uber Flussigkeitsbewegung Bei Sehr Kleiner Reibung,” in III Internationalen Mathematiker-Kongresses, Heidelberg, 1904 (Teubner, Leipzig, 1905), p. 484–491.

  16. 16a

    G. I. Taylor, “Statistical theory of turbulence. Parts I–IV,” Proc. Roy. Soc. A151 (874), p. 421–478 (1935);

    ADS  Article  MATH  Google Scholar 

  17. 16b

    Part V, Proc. Roy. Soc., No. 888, 307–317 (1936).

  18. 17

    N. Z. Pinus and G. N. Shur, “Experimental study of the coherent structure of turbulent flows in the lower troposphere,” Meteorol. Gidrol, No. 5, 19–24 (1989).

    Google Scholar 

  19. 18

    Lord Rayleigh, “On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side,” Philos. Mag. 32 (6), 529–546 (1916).

    Article  MATH  Google Scholar 

  20. 19

    L. Richardson, Weather Prediction by Numerical Process (The University Press, Cambridge, 1922).

    MATH  Google Scholar 

  21. 20

    T. Karman and L. Howarth, “On the statistical theory of isotropic turbulence,” Proc. R. Soc. A 164, 192–215 (1938).

    ADS  Article  MATH  Google Scholar 

  22. 21

    A. M. Obukhov, “Teurbulence in a temperature-inhomogeneous medium,” Tr. Inst. Teor. Geofiz. Akad Nauk SSSR 1, 95–115 (1946).

    Google Scholar 

  23. 22

    A. S. Monin, “Dynamic turbulence in the atmosphere,” Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz. 14 (3), 232–254 (1950) [in Russian].

    Google Scholar 

  24. 23

    A. S. Monin, “Air heating in Open Steppe,” in Microclimate and Climate Studies in the Caspian Depression (Publishing House of the Academy of Sciences of USSR, Moscow, 1953), p. 100–123 [in Russian].

    Google Scholar 

  25. 24

    V. F. Makarov and G. N. Shur, “Some features of the clear-sky turbulence structure in mountain regions,” Tr. TsAO, Is. 112, 91–97 (197).

  26. 25

    V. V. Nosov, V. P. Lukin, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Result of measurements of the astroclimate characteristics of astronomical telescopes in the mountain observatories,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–11, 82–87 (2009).

  27. 26

    V. V. Nosov, V. P. Lukin, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Astroclimate parameters of the surface layer in the Sayan Solar Observatory,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–12, 87–94 (2009).

  28. 27

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent turbulence on the territory of Baikal Astrophysical Observatory,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), p. 204–205 (2012).

  29. 28

    V. V. Nosov, P. G. Kovadlo, V. P. Lukin, and A. V. Torgaev, “Atmospheric coherent turbulence,” Atmos. Ocean. Opt. 26 (3), 201–206 (2013).

    Article  Google Scholar 

  30. 29

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent turbulence near the receiving aperture of an astronomical telescope,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), p. 212–214 (2012).

  31. 30

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere. Experiment and theory,” Soln.-Zemnaya Fiz., Is. 14, 97–113 (2009).

  32. 31

    A. S. Monin, “Atmospheric turbulence structure,” Probab. Theory Its Appl. 3, Is. 3, p. 285–317 (1958).

  33. 32

    W. Frost and T. H. Moulden, Handbook of Turbulence. Vol. 1. Fundamentals and Applications (Plenum Press, New York, 1977).

  34. 33

    Yu. S. Sedunov, S. I. Avdyushin, E. P. Borisenkov, O. A. Volkovitskii, N. N. Petrov, R. G. Reitenbakh, V. I. Smirnov, and A. A. Chernikov, Atmosphere: Handbook (Reference Data and Models) (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  35. 34

    N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  36. 35

    A. S. Ginevskii and E. V. Vlasov, “Coherent structures in turbulent jet streams,” in Models in Solid Medium Mechanics, Ed. by G.V. Gadiyak (Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, 1983), s. 91–117 [in Russian].

    Google Scholar 

  37. 36

    V. I. Klyatskin, Statistical Analysis of Coherent Phenomena in Dynamic Stochastic Systems (KRASAND, Moscow, 2015) [in Russian].

    MATH  Google Scholar 

  38. 37

    A. Townsend, “The structure of the turbulent boundary layer,” Math. Proc. Cambridge Philos. Soc. 47 (2), 375–395 (1951).

    ADS  Article  MATH  Google Scholar 

  39. 38

    A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956).

    MATH  Google Scholar 

  40. 39

    G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, New York, 1953).

    MATH  Google Scholar 

  41. 40

    G. Brown and A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64 (4), 775–816 (1974).

    ADS  Article  MATH  Google Scholar 

  42. 41

    P. Davies and A. Yule, “Coherent structures in turbulence,” J. Fluid Mech. 69, 513–537 (1975).

    ADS  Article  MATH  Google Scholar 

  43. 42

    A. Michalke and H. Fuchs, “On turbulence and noise of an axisymmetric shear flow,” J. Fluid Mech. 70, 179–205 (1975).

    ADS  Article  MATH  Google Scholar 

  44. 43

    R. E. Kaplan and J. Laufer, “The intermittently turbulent region of the boundary layer,” in Proc. of 12th Intern. Congress of Applied Mechanics, 1968, Ed. by M. Hetenyi and W.G. Vincenti (Springer, Berlin, Heidelberg, 1969).

  45. 44

    R. J. Adrian, “On the role of conditional averages in turbulence theory,” in Proc. of the 4th Biennial Symp. on Turbulence in Liquids (Science Press, Princeton, 1977).

  46. 45

    H. W. Liepmann, “Experimental fluid mechanics: The impact of modern instrumentation,” in Proc. of the 13th Int. Congress of Theoretical and Applied Mechanics, Ed. by E. Becker and G.K. Mikhailov (Springer, Berlin, Heidelberg, 1973).

  47. 46

    A. S. Monin, “Structure of the wind velocity and temperature fields in the surface air layer,” in Proceedings of IAP AS USSR.Is. 4 (Publishing House of the Academy of Sciences of USSR, Moscow, 1962), p. 5–20 [in Russian].

  48. 47

    P.A. Vorontsov, Turbulence and Vertical Currents in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1966) [in Russian].

    Google Scholar 

  49. 48

    V. I. Tatarskii, Theory of Fluctuation Phenomena during Wave Propagation in a Turbulent Atmosphere (Publishing House of the Academy of Sciences of USSR, Moscow, 1959) [in Russian].

    Google Scholar 

  50. 49

    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  51. 50

    V. V. Boronoev, M. S. Belen’kii, N. Ts. Gomboev, and V. L. Mironov, Optical Sounding of Atmospheric Turbulence (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  52. 51

    N. E. Zhukovskii, “Snow banks and silting-up of rivers (1919),” in Complete Set of Works. Vol. 3. Hydrodynamics (ONTI, Moscow, Leningrad, 1936), p. 451–474 [in Russian].

  53. 52

    L. Prandtl and O. Titiens, Hydro- and Aeromechanics (GITTL, Moscow, 1933), vol. 1 [in Russian].

    Google Scholar 

  54. 53

    L. Prandtl, “Neuere Ergebnisse Der Turbulenzforschung,” Z. Ver. Dtsch. Ing. 77, 105–114 (1933).

    MATH  Google Scholar 

  55. 54

    H. L. Dryden, “Recent advances in the mechanics of boundary layer flow,” in Advanced in Applied Mechanics (Acad. Press, New York, 1948), vol. 1.

    Google Scholar 

  56. 55

    A. A. Townsend, “Measurements in the turbulent wake of a cylinder,” Proc. R. Soc. London, Ser. A 190, 551–561 (1947).

    ADS  Article  Google Scholar 

  57. 56

    G. N. Shur, “Spectral structure of a turbulence in the free atmosphere from aircraft data,” Tr. TsAO, Is. 53, p. 43–54 (1964).

    Google Scholar 

  58. 57

    E. V. Vlasov, A. S. Ginevskii, and R. K. Karavosov, “Direct and indirect methods for experimental detection of the turbulence structure,” in Mechanics of Turbulent Flows. Proc. of the All-Russian Conference “Problems of Fluid and Gas Turbulent Flows” (Nauka, Moscow, 1980), p. 206–219 [in Russian].

  59. 58

    A.S. Monin, “Hydrodynamic instability,” Phys.-Uspekhi 29, 843–868 (1986).

    ADS  MathSciNet  Article  Google Scholar 

  60. 59

    R. Griffiths, The Monthly Review (1801), vol. 35.

  61. 60

    R. Grant, History of Physical Astronomy from the Earliest Ages to the Middle of the Nineteenth Century (1852).

  62. 61a

    H. W. Liepmann, “Aspects of the turbulence problem. Part 1,” J. Appl. Math. Phys. (ZAMP) 3 (5), 321–342 (1952);

    MathSciNet  Google Scholar 

  63. 61b

    Part 2, ZAMP 3 (6), 407–426 (1952).

  64. 62

    P. Bradshaw, “The turbulence structure of equilibrium boundary layers,” J. Fluid Mech. 29, 625–645 (1967).

    ADS  Article  Google Scholar 

  65. 63

    Yu. I. Khlopkov, V. A. Zharov, and S. L. Gorelov, Coherent Structures in the Turbulent Boundary Layer (MPTI, Moscow, 2002) [in Russian].

    Google Scholar 

  66. 64

    R. F. Blackwelder and L. S. G. Kovasznay, “Time scale and correlation in a turbulent boundary layer,” Phys. Fluids 15, 1545–1554 (1972).

    ADS  Article  Google Scholar 

  67. 65

    R. F. Blackwelder, “Coherent structures associated with turbulent transport,” in Proc. of the 2nd Int. Symp. “On Transport Phenomena in Turbulent Flows” (Tokyo, 1987), p. 1–20.

  68. 66

    A. E. Perry, T. T. Lim, M. S. Chong, and E. W. Teh, “The fabric of turbulence,” AIAA. Paper No. 80–1358 (1980).

  69. 67

    U. Frish, M. M. Afonso, A. Mazzino, and V. Yakhot, “Does multifractal theory of turbulence have logarithms in the scaling relations,” J. Fluid Mech. 542, 97–103 (2005).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. 68

    A. Arneodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard, R. T. Fisher, R. Grauer, H. Homann, D. Q. Lamb, A. S. Lanotte, E. Leveque, B. Luthi, J. Mann, N. Mordant, W. Muller, S. Ott, N. T. Ouellette, J. F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu, P. K. Yeung, “Universal intermittent properties of particle trajectories in highly turbulent flows,” Phys. Rev. Lett. 100, 254–504 (2008).

    Article  Google Scholar 

  71. 69

    P. Holmes, J. Lumley, G. Berkooz, and C. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 2012).

    Book  MATH  Google Scholar 

  72. 70

    M. Ya. Marov and A. V. Kolesnichenko, Turbulence and Self-Organization. Modeling Astrophysical Objects (Springer, 2013).

    Book  Google Scholar 

  73. 71

    G. Haller, “Lagrangian coherent structures,” Ann. Rev. Fluid Mech. 47, 137–162 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  74. 72

    F. T. M. Nieuwstadt, B. J. Boersma, and J. Westerweel, Turbulence: Introduction to theory and applications of turbulent flows (Springer, 2016).

    Book  Google Scholar 

  75. 73

    J. Jimenez, “Coherent structures in wall-bounded turbulence,” J. Fluid Mech. 842, 1 (2018).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  76. 74

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part ,” Atmos. Ocean. Opt. 20 (11), 926–934 (2007).

    Google Scholar 

  77. 75

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part 2,” Atmos. Ocean. Opt. 21 (3), 180–190 (2008).

    Google Scholar 

  78. 76

    V. V. Nosov, V. M. Grigoriev, P. G. Kovadlo, V. P. Lukin, P. G. Papushev, and A. V. Torgaev, “Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory,” Proc. SPIE—Int. Soc. Opt. Eng. 69361R, 1–4 (2007).

  79. 77

    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Coherent structures in the turbulent atmosphere,” in Mathematical Models of Non-Linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere, Ed. by A.B. Nadycto, L.A. Uvarov, and A.V. Latyshev (Nova Science Publishers, New York, 2013).

    Google Scholar 

  80. 78

    V. V. Nosov, “Atmospheric turbulence in the anisotropic boundary layer,” in Optical Waves and Laser Beams in the Irregular Atmosphere, Ed. by N. Blaunshtein, and N. Kopeika (Taylor & Francis Group, CRC Press, Boca Raton, London, New York, 2018).

  81. 79

    G. K. Patterson and J. L. Zakin, Proc. of 5th Biennial Symposium on Turbulence, University of Missouri-Rolla, Rolla, Mo., October 3–5, 1977 (N.P., VS, 1979).

  82. 80

    A. Hussain, “Coherent structures and studies of perturbed and unperturbed jets,” in The Role of Coherent Structures in Modelling Turbulence and Mixing (Springer, Berlin, Heidelberg, 1981), Vol. 136.

    Google Scholar 

  83. 81

    L. G. Loitsyanskii, From my Memories. Records by a Professor of Polytechnic (B.S.K., SPb., 1998) [in Russian].

  84. 82

    L. G. Loitsyanskii, Fluid and Gas Mechanics (Drofa, Moscow, 2003) [in Russian].

    Google Scholar 

  85. 83

    A. V. Kolesnichenko and M. Ya. Marov, Turbulence and Self-Organization. Problems of Simulation of Space and Natural Media (BINOM. Laboratoriya znanii, Moscow, 2015), 3rd ed. [in Russian].

  86. 84

    M. A. Gol’dshtik and V. N. Shtern, “On the theory of turbulence,” Dokl. Acad. Nauk SSSR 257 (6), 1319–1322 (1981).

    ADS  Google Scholar 

  87. 85

    M. A. Gol’dshtik, Dynamic, different-weight and flow structures in turbulence,” Turbulence Structure, Ed. by M.A. Gol’dshtik (Institute of Thermal Physics, Siberian Branch, Academy of Sciences of USSR, 1982), p. 5–12 [in Russian].

  88. 86

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere,” Solnechno-Zemnaya Fiz. Is. 14, p. 97–113 (2009).

  89. 87

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Problem of Coherent Turbulence,” Vestn. MGTU “Stankin” 24 (1), p. 103–107 (2013).

    Google Scholar 

  90. 88

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Approximations of the synoptic spectra of atmospheric turbulence by sums of spectra of coherent structures,” Proc. SPIE 9910, 99101 (2016).

    ADS  Google Scholar 

  91. 89

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures—elementary components of atmospheric turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), 236–238 (2012).

  92. 90

    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “The solitonic hydrodynamical turbulence,” in Proc. VI Int. Conf. “Solitons Collapses and Turbulence: Achievements Developments and Perspectives” (Novosibirsk, 2012), p. 108–109 [in Russian].

  93. 91

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent components of turbulence,” in Abstracts of Intern. Conf. Devoted to the Memory of Acad. A.M. Obukhov “Turbulence and Atmospheric and Climate Dynamics”. Vol. I. Turbulence (GEOS, Moscow, 2013), p. 43–47 [in Russian].

  94. 92

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent Ccomponents of Synoptical Spectra of Atmospheric Turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 8 (8/3), p. 206–209 (2015).

  95. 93

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “ Simulation of coherent structures (topological solitons) inside closed rooms by solving numerically hydrodynamic equations,” Opt. Atmos. Okeana 28 (2), p. 120–133 (2015).

    Google Scholar 

  96. 94

    V. P. Lukin, L. A. Bol’basova, and V. V. Nosov, “Comparison of Kolmogorov’s and coherent turbulence,” Appl. Opt. 53 (10), B231–B236 (2014).

    Article  Google Scholar 

  97. 95

    V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Usp. Sovr. Estestv. No. 12, 369–377 (2014).

    Google Scholar 

  98. 96

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Recommendations for the site selection of sites for the ground-based astronomical telescopes,” Opt. Atmos. Okeana 23 (12), 1099–1110 (2010).

    Google Scholar 

  99. 97

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Optimal place for ground-based short-wave receivers of atmospheric telecommunication systems,” Radiotekh. Telekommunikatsionnye Sist. No. 3, 76–82 (2011).

    Google Scholar 

  100. 98

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Practical recommendations for the selection of sites for the ground-based astronomical telescopes,” Solnechno-Zemnaya Fiz. Is. 18, 86–97 (2011).

  101. 99

    A. A. Azbukin, A. Ya. Bogushevich, V. S. Il’ichevskii, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “Automated ultrasonic meteorological complex AMK-03,” Meteorol. Gidrol. No. 11, 89–97 (2006).

    Google Scholar 

  102. 100

    S. Popinet, The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2001–2015. http://gfs.sf.net. Cited October 3, 2018.

  103. 101

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Appl. Opt. 55 (12), B163–B168 (2016).

    Article  Google Scholar 

  104. 102

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Results of measurements of A.N. Kolmogorov and A.M. Obukhov constants in the Kolmogorov–Obukhov law,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–09, 70–77 (2009).

  105. 103

    V. V. Nosov, V. P. Lukin, and A. V. Torgaev, “Structure function of temperature fluctuations in coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–13, 94–97 (2009).

  106. 104

    V. V. Nosov, V. P. Lukin, and A. V. Torgaev, “Decrease of the light wave fluctuations in the coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–10, 77–82 (2009).

  107. 105

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Fluctuations of astronomical images in a coherent turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), 223–225 (2012).

  108. 106

    V. V. Nosov, V. M. Grigoriev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Intermittency of the astronomical images jitter in the high-mountain observations,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920 (2014).

  109. 107

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, P. G. Papushev, and A. V. Torgaev, “Measurement results of astroclimate parameters of the dome space of AZT-33 telescope of the Sayan Solar Observatory of Institute of Solar-Terrestrial Physics SB RAS,” Solnechno-Zemnaya Fiz. Is. 9, 1–103 (2006).

  110. 108

    V. P. Lukin, V. V. Nosov, and A. V. Torgaev, “Features of optical image jitter in a random medium with a finite outer scale,” Appl. Opt. 53 (10), B196–B204 (2014).

    Article  Google Scholar 

  111. 109

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence intermittency effect in high-mountain observations,” Izv. Vyssh. Ucheb. Zaved. Fiz. No. 8/3, 210–213 (2015).

    Google Scholar 

  112. 110

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of air motion along optical paths inside specialized rooms of astronomical telescopes. Numerical simulation,” Opt. Atmos. Okeana 28 (7), 614–621 (2015).

    Google Scholar 

  113. 111

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence structure along special optical paths in astronomical telescopes,” Izv. Vyssh. Ucheb. Zaved. Fiz. 59 (12/2), 134–137 (2016).

  114. 112

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Temporal intermittency of astronomical image jitter variance,” in Proc. III All-Rus. Scientific Conf. “Problems of Military-Applied Geophysics and Control of the State of the Environment” (Mozhaiskii Military-Space Academy, SPb., 2014), vol. 1, p. 292–297 [in Russian].

  115. 113

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of a turbulence above nonuniform heated surfaces. Numerical simulation,” Izv. Vyssh. Ucheb. Zaved. Fiz. 58 (8/3), p. 187–190 (2015).

  116. 114

    V. V. Nosov, O. N. Emaleev, V. P. Lukin, and E. V. Nosov, “Semiempirical hypotheses of turbulence theory in the anisotropic boundary layer,” Atmos. Ocean. Opt. 18 (10), 756–773 (2005).

    Google Scholar 

  117. 115

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulent scales of the Monin–Obukhov theory of similarity in an anisotropic boundary layer,” in Abstracts of Intern. Conf. Devoted to the Memory of Acad. A.M. Obukhov “Turbulence and Atmospheric and Climate Dynamics”. Vol. I. Turbulence (GEOS, Moscow, 2013), p. 38–43 [in Russian].

  118. 116

    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulent scales of the velocity and temperature in the atmospheric boundary layer,” Izv. Vyssh. Ucheb. Zaved. Fiz. 56 (8/3), 331–333 (2013).

  119. 117

    P. N. Brandt, “Frequency spectra of solar image motion,” Solar Phys. 7, 187–203 (1969).

    ADS  Article  Google Scholar 

  120. 118

    P. G. Kovadlo, V. I. Ivanov, and Sh. P. Darchiya, “Photoelectrical detector of solar image jitter,” Issled. Geomagnetizmu, Aeronomii Fiz. Solntsa. Is. 37, 196–202 (1975).

    Google Scholar 

  121. 119

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of air turbulent motion inside Primary mirror shaft at Siberian lidar station of IAO SB RAS. Experiment and simulation,” Opt. Atmos. Okeana 29 (11), 905–910 (2016).

    Google Scholar 

  122. 120

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence and heat exchange inside the dome room of Lidar Station. Experiment and simulation,” J. Phys.: Conf. Ser. 754 (2), 022008–1 (2016).

    Google Scholar 

  123. 121

    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. L. Afanas’ev, Yu. Yu. Balega, V. V. Vlasyuk, V. E. Panchuk, and G. V. Yakopov, “Researches of the astroclimate in the Special Astrophysical Observatory of RAS,” Opt. Atmos. Okeana 31 (8), 616–627 (2018).

    Google Scholar 

  124. 122

    V. E. Panchuk and V. L. Afanas’ev, “Astroclimate of Northern Caucasus—myths and reality, Astrophys. Bull. 66 (2), 233–254 (2011).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Nosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosov, V.V., Lukin, V.P., Nosov, E.V. et al. Formation of Turbulence at Astronomical Observatories in Southern Siberia and North Caucasus. Atmos Ocean Opt 32, 464–482 (2019). https://doi.org/10.1134/S1024856019040110

Download citation

Keywords:

  • coherent turbulence
  • non-Kolmogorov turbulence
  • astroclimate
  • coherent structure