Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 464–482 | Cite as

Formation of Turbulence at Astronomical Observatories in Southern Siberia and North Caucasus

  • V. V. Nosov
  • V. P. Lukin
  • E. V. NosovEmail author
  • A. V. Torgaev
OPTICAL INSTRUMENTATION
  • 17 Downloads

Abstract

The main characteristics of the astroclimate (the structure of turbulent fields and conditions for their formation) are studied for several Russian astronomical observatories in southern Siberia and North Caucasus, including Sayan Solar, Baikal Astrophysical, Special Astrophysical, and Kolyvansky Ridge Observatories and the Center for Laser Atmosphere Sensing of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. The experimental results have been received from long-term astroclimate observations (expeditions in 2006–2017) with the use of small-size ultrasonic weather stations; and theoretical results, from the numerical solution of different boundary problems for the Navier–Stokes equations. The presence of regions with coherent (non-Kolmogorov) turbulence over the observatories has been ascertained, the formation of which is caused by the topography and the nonuniform heating of the underlying surface. Large-scale coherent vortex structures and coherent turbulence have been detected inside dome rooms. Numerical simulation allows us to analyze the influence of design features and temperature regimes of the telescope components and to test the telescope optical characteristics, including the minimization of the effects of external and under-dome turbulence. The paper includes the review of the history and evolution of the “coherent structure” and “coherent turbulence” concepts based on the world scientific literature and our own researches.

Keywords:

coherent turbulence non-Kolmogorov turbulence astroclimate coherent structure 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    A. E. Gur’yanov, “Temperature fluctuations in air environment near a telescope in nighttime,” in “Astroclimate and Telescope Efficiency. Proc. of the All-Russian Conference-Workshop “Atroclimate” of the Astronomical Council of the Academy of Sciences of USSR (Abastumani, 1981) (Nauka, Leningrad, 1984), p. 164–168 [in Russian].Google Scholar
  2. 2.
    A. Tokovinin, “Where is the surface-layer turbulence?,” Proc. SPIE—Int. Soc. Opt. Eng. 7733, 77331 (2010).Google Scholar
  3. 3.
    V. V. Nosov, V. P. Lukin, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, Optical Properties of Turbulence in the Atmospheric Boundary layer in Mountains (Publishing House of Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2016) [in Russian].Google Scholar
  4. 4.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. 5.
    V. P. Lukin, Adaptive Atmospheric Optics (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  6. 6.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Atmospheric Optics. Vol. 5. Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  7. 7.
    V. A. Banakh, V. V. Belov, A. A. Zemlyanov, G. M. Krekov, V. P. Lukin, G. G. Matvienko, V. V. Nosov, A. Ya. Sukhanov, and A. V. Falits, Propagation of Optical Waves through Random Inhomogeneous Nonlinear Media (Publishing House of IAO SB RAS, Tomsk, 2012) [in Russian].Google Scholar
  8. 8.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Gidrometeoizdat, Saint Petersburg, 1992), vol. 1 [in Russian].Google Scholar
  9. 9.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Gidrometeoizdat, Saint Petersburg, 1996), vol. 2 [in Russian].Google Scholar
  10. 10.
    A. N. Kolmogorov, “Local turbulence structure in uncompressible viscous fluid at very high Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299–303 (1941).ADSGoogle Scholar
  11. 11.
    A.N. Kolmogorov, Equations for turbulent motion of uncompressible fluids,” Izv. Akad. Nauk SSSR. Ser. Fiz. 6 (1–2), 56–58 (1942).Google Scholar
  12. 12.
    G. Hagen, “Uber Die Bewegung Des Wassers in Cylindrischen, Nahe Horizontalen Leitungen,” in Abh. Akad. Wiss. (Berlin, 1869), p. 1–29.Google Scholar
  13. 13.
    O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Proc. Roy. Soc. 35, 84–99 (1883).CrossRefzbMATHGoogle Scholar
  14. 14.
    H. Benard, “Les tourbillons cellulaires dans une nappe liquide,” Rev. Gen. Sci. Pure Appl. 11, 1309–1328 (1900).Google Scholar
  15. 15.
    L. Prandtl, “Uber Flussigkeitsbewegung Bei Sehr Kleiner Reibung,” in III Internationalen Mathematiker-Kongresses, Heidelberg, 1904 (Teubner, Leipzig, 1905), p. 484–491.Google Scholar
  16. 16a.
    G. I. Taylor, “Statistical theory of turbulence. Parts I–IV,” Proc. Roy. Soc. A151 (874), p. 421–478 (1935);ADSCrossRefzbMATHGoogle Scholar
  17. 16b.
    Part V, Proc. Roy. Soc., No. 888, 307–317 (1936).Google Scholar
  18. 17.
    N. Z. Pinus and G. N. Shur, “Experimental study of the coherent structure of turbulent flows in the lower troposphere,” Meteorol. Gidrol, No. 5, 19–24 (1989).Google Scholar
  19. 18.
    Lord Rayleigh, “On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side,” Philos. Mag. 32 (6), 529–546 (1916).CrossRefzbMATHGoogle Scholar
  20. 19.
    L. Richardson, Weather Prediction by Numerical Process (The University Press, Cambridge, 1922).zbMATHGoogle Scholar
  21. 20.
    T. Karman and L. Howarth, “On the statistical theory of isotropic turbulence,” Proc. R. Soc. A 164, 192–215 (1938).ADSCrossRefzbMATHGoogle Scholar
  22. 21.
    A. M. Obukhov, “Teurbulence in a temperature-inhomogeneous medium,” Tr. Inst. Teor. Geofiz. Akad Nauk SSSR 1, 95–115 (1946).Google Scholar
  23. 22.
    A. S. Monin, “Dynamic turbulence in the atmosphere,” Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz. 14 (3), 232–254 (1950) [in Russian].Google Scholar
  24. 23.
    A. S. Monin, “Air heating in Open Steppe,” in Microclimate and Climate Studies in the Caspian Depression (Publishing House of the Academy of Sciences of USSR, Moscow, 1953), p. 100–123 [in Russian].Google Scholar
  25. 24.
    V. F. Makarov and G. N. Shur, “Some features of the clear-sky turbulence structure in mountain regions,” Tr. TsAO, Is. 112, 91–97 (197).Google Scholar
  26. 25.
    V. V. Nosov, V. P. Lukin, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Result of measurements of the astroclimate characteristics of astronomical telescopes in the mountain observatories,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–11, 82–87 (2009).Google Scholar
  27. 26.
    V. V. Nosov, V. P. Lukin, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Astroclimate parameters of the surface layer in the Sayan Solar Observatory,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–12, 87–94 (2009).Google Scholar
  28. 27.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent turbulence on the territory of Baikal Astrophysical Observatory,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), p. 204–205 (2012).Google Scholar
  29. 28.
    V. V. Nosov, P. G. Kovadlo, V. P. Lukin, and A. V. Torgaev, “Atmospheric coherent turbulence,” Atmos. Ocean. Opt. 26 (3), 201–206 (2013).CrossRefGoogle Scholar
  30. 29.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent turbulence near the receiving aperture of an astronomical telescope,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), p. 212–214 (2012).Google Scholar
  31. 30.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere. Experiment and theory,” Soln.-Zemnaya Fiz., Is. 14, 97–113 (2009).Google Scholar
  32. 31.
    A. S. Monin, “Atmospheric turbulence structure,” Probab. Theory Its Appl. 3, Is. 3, p. 285–317 (1958).Google Scholar
  33. 32.
    W. Frost and T. H. Moulden, Handbook of Turbulence. Vol. 1. Fundamentals and Applications (Plenum Press, New York, 1977).Google Scholar
  34. 33.
    Yu. S. Sedunov, S. I. Avdyushin, E. P. Borisenkov, O. A. Volkovitskii, N. N. Petrov, R. G. Reitenbakh, V. I. Smirnov, and A. A. Chernikov, Atmosphere: Handbook (Reference Data and Models) (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  35. 34.
    N. K. Vinnichenko, N. Z. Pinus, S. M. Shmeter, and G. N. Shur, Turbulence in the Free Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].Google Scholar
  36. 35.
    A. S. Ginevskii and E. V. Vlasov, “Coherent structures in turbulent jet streams,” in Models in Solid Medium Mechanics, Ed. by G.V. Gadiyak (Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk, 1983), s. 91–117 [in Russian].Google Scholar
  37. 36.
    V. I. Klyatskin, Statistical Analysis of Coherent Phenomena in Dynamic Stochastic Systems (KRASAND, Moscow, 2015) [in Russian].zbMATHGoogle Scholar
  38. 37.
    A. Townsend, “The structure of the turbulent boundary layer,” Math. Proc. Cambridge Philos. Soc. 47 (2), 375–395 (1951).ADSCrossRefzbMATHGoogle Scholar
  39. 38.
    A. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956).zbMATHGoogle Scholar
  40. 39.
    G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, New York, 1953).zbMATHGoogle Scholar
  41. 40.
    G. Brown and A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64 (4), 775–816 (1974).ADSCrossRefzbMATHGoogle Scholar
  42. 41.
    P. Davies and A. Yule, “Coherent structures in turbulence,” J. Fluid Mech. 69, 513–537 (1975).ADSCrossRefzbMATHGoogle Scholar
  43. 42.
    A. Michalke and H. Fuchs, “On turbulence and noise of an axisymmetric shear flow,” J. Fluid Mech. 70, 179–205 (1975).ADSCrossRefzbMATHGoogle Scholar
  44. 43.
    R. E. Kaplan and J. Laufer, “The intermittently turbulent region of the boundary layer,” in Proc. of 12th Intern. Congress of Applied Mechanics, 1968, Ed. by M. Hetenyi and W.G. Vincenti (Springer, Berlin, Heidelberg, 1969).Google Scholar
  45. 44.
    R. J. Adrian, “On the role of conditional averages in turbulence theory,” in Proc. of the 4th Biennial Symp. on Turbulence in Liquids (Science Press, Princeton, 1977).Google Scholar
  46. 45.
    H. W. Liepmann, “Experimental fluid mechanics: The impact of modern instrumentation,” in Proc. of the 13th Int. Congress of Theoretical and Applied Mechanics, Ed. by E. Becker and G.K. Mikhailov (Springer, Berlin, Heidelberg, 1973).Google Scholar
  47. 46.
    A. S. Monin, “Structure of the wind velocity and temperature fields in the surface air layer,” in Proceedings of IAP AS USSR.Is. 4 (Publishing House of the Academy of Sciences of USSR, Moscow, 1962), p. 5–20 [in Russian].Google Scholar
  48. 47.
    P.A. Vorontsov, Turbulence and Vertical Currents in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1966) [in Russian]. Google Scholar
  49. 48.
    V. I. Tatarskii, Theory of Fluctuation Phenomena during Wave Propagation in a Turbulent Atmosphere (Publishing House of the Academy of Sciences of USSR, Moscow, 1959) [in Russian].Google Scholar
  50. 49.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  51. 50.
    V. V. Boronoev, M. S. Belen’kii, N. Ts. Gomboev, and V. L. Mironov, Optical Sounding of Atmospheric Turbulence (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  52. 51.
    N. E. Zhukovskii, “Snow banks and silting-up of rivers (1919),” in Complete Set of Works. Vol. 3. Hydrodynamics (ONTI, Moscow, Leningrad, 1936), p. 451–474 [in Russian].Google Scholar
  53. 52.
    L. Prandtl and O. Titiens, Hydro- and Aeromechanics (GITTL, Moscow, 1933), vol. 1 [in Russian].Google Scholar
  54. 53.
    L. Prandtl, “Neuere Ergebnisse Der Turbulenzforschung,” Z. Ver. Dtsch. Ing. 77, 105–114 (1933).zbMATHGoogle Scholar
  55. 54.
    H. L. Dryden, “Recent advances in the mechanics of boundary layer flow,” in Advanced in Applied Mechanics (Acad. Press, New York, 1948), vol. 1.Google Scholar
  56. 55.
    A. A. Townsend, “Measurements in the turbulent wake of a cylinder,” Proc. R. Soc. London, Ser. A 190, 551–561 (1947).ADSCrossRefGoogle Scholar
  57. 56.
    G. N. Shur, “Spectral structure of a turbulence in the free atmosphere from aircraft data,” Tr. TsAO, Is. 53, p. 43–54 (1964).Google Scholar
  58. 57.
    E. V. Vlasov, A. S. Ginevskii, and R. K. Karavosov, “Direct and indirect methods for experimental detection of the turbulence structure,” in Mechanics of Turbulent Flows. Proc. of the All-Russian Conference “Problems of Fluid and Gas Turbulent Flows” (Nauka, Moscow, 1980), p. 206–219 [in Russian].Google Scholar
  59. 58.
    A.S. Monin, “Hydrodynamic instability,” Phys.-Uspekhi 29, 843–868 (1986).ADSMathSciNetCrossRefGoogle Scholar
  60. 59.
    R. Griffiths, The Monthly Review (1801), vol. 35.Google Scholar
  61. 60.
    R. Grant, History of Physical Astronomy from the Earliest Ages to the Middle of the Nineteenth Century (1852).Google Scholar
  62. 61a.
    H. W. Liepmann, “Aspects of the turbulence problem. Part 1,” J. Appl. Math. Phys. (ZAMP) 3 (5), 321–342 (1952);MathSciNetGoogle Scholar
  63. 61b.
    Part 2, ZAMP 3 (6), 407–426 (1952).Google Scholar
  64. 62.
    P. Bradshaw, “The turbulence structure of equilibrium boundary layers,” J. Fluid Mech. 29, 625–645 (1967).ADSCrossRefGoogle Scholar
  65. 63.
    Yu. I. Khlopkov, V. A. Zharov, and S. L. Gorelov, Coherent Structures in the Turbulent Boundary Layer (MPTI, Moscow, 2002) [in Russian].Google Scholar
  66. 64.
    R. F. Blackwelder and L. S. G. Kovasznay, “Time scale and correlation in a turbulent boundary layer,” Phys. Fluids 15, 1545–1554 (1972).ADSCrossRefGoogle Scholar
  67. 65.
    R. F. Blackwelder, “Coherent structures associated with turbulent transport,” in Proc. of the 2nd Int. Symp. “On Transport Phenomena in Turbulent Flows” (Tokyo, 1987), p. 1–20.Google Scholar
  68. 66.
    A. E. Perry, T. T. Lim, M. S. Chong, and E. W. Teh, “The fabric of turbulence,” AIAA. Paper No. 80–1358 (1980).Google Scholar
  69. 67.
    U. Frish, M. M. Afonso, A. Mazzino, and V. Yakhot, “Does multifractal theory of turbulence have logarithms in the scaling relations,” J. Fluid Mech. 542, 97–103 (2005).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. 68.
    A. Arneodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard, R. T. Fisher, R. Grauer, H. Homann, D. Q. Lamb, A. S. Lanotte, E. Leveque, B. Luthi, J. Mann, N. Mordant, W. Muller, S. Ott, N. T. Ouellette, J. F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu, P. K. Yeung, “Universal intermittent properties of particle trajectories in highly turbulent flows,” Phys. Rev. Lett. 100, 254–504 (2008).CrossRefGoogle Scholar
  71. 69.
    P. Holmes, J. Lumley, G. Berkooz, and C. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 2012).CrossRefzbMATHGoogle Scholar
  72. 70.
    M. Ya. Marov and A. V. Kolesnichenko, Turbulence and Self-Organization. Modeling Astrophysical Objects (Springer, 2013).CrossRefGoogle Scholar
  73. 71.
    G. Haller, “Lagrangian coherent structures,” Ann. Rev. Fluid Mech. 47, 137–162 (2015).ADSMathSciNetCrossRefGoogle Scholar
  74. 72.
    F. T. M. Nieuwstadt, B. J. Boersma, and J. Westerweel, Turbulence: Introduction to theory and applications of turbulent flows (Springer, 2016).CrossRefGoogle Scholar
  75. 73.
    J. Jimenez, “Coherent structures in wall-bounded turbulence,” J. Fluid Mech. 842, 1 (2018).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. 74.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part ,” Atmos. Ocean. Opt. 20 (11), 926–934 (2007).Google Scholar
  77. 75.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Astroclimate of specialized rooms of the Large Solar Vacuum Telescope. Part 2,” Atmos. Ocean. Opt. 21 (3), 180–190 (2008).Google Scholar
  78. 76.
    V. V. Nosov, V. M. Grigoriev, P. G. Kovadlo, V. P. Lukin, P. G. Papushev, and A. V. Torgaev, “Astroclimate inside the dome of AZT-14 telescope of Sayan Solar Observatory,” Proc. SPIE—Int. Soc. Opt. Eng. 69361R, 1–4 (2007).Google Scholar
  79. 77.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “Coherent structures in the turbulent atmosphere,” in Mathematical Models of Non-Linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere, Ed. by A.B. Nadycto, L.A. Uvarov, and A.V. Latyshev (Nova Science Publishers, New York, 2013).Google Scholar
  80. 78.
    V. V. Nosov, “Atmospheric turbulence in the anisotropic boundary layer,” in Optical Waves and Laser Beams in the Irregular Atmosphere, Ed. by N. Blaunshtein, and N. Kopeika (Taylor & Francis Group, CRC Press, Boca Raton, London, New York, 2018).Google Scholar
  81. 79.
    G. K. Patterson and J. L. Zakin, Proc. of 5th Biennial Symposium on Turbulence, University of Missouri-Rolla, Rolla, Mo., October 3–5, 1977 (N.P., VS, 1979).Google Scholar
  82. 80.
    A. Hussain, “Coherent structures and studies of perturbed and unperturbed jets,” in The Role of Coherent Structures in Modelling Turbulence and Mixing (Springer, Berlin, Heidelberg, 1981), Vol. 136.Google Scholar
  83. 81.
    L. G. Loitsyanskii, From my Memories. Records by a Professor of Polytechnic (B.S.K., SPb., 1998) [in Russian].Google Scholar
  84. 82.
    L. G. Loitsyanskii, Fluid and Gas Mechanics (Drofa, Moscow, 2003) [in Russian].Google Scholar
  85. 83.
    A. V. Kolesnichenko and M. Ya. Marov, Turbulence and Self-Organization. Problems of Simulation of Space and Natural Media (BINOM. Laboratoriya znanii, Moscow, 2015), 3rd ed. [in Russian].Google Scholar
  86. 84.
    M. A. Gol’dshtik and V. N. Shtern, “On the theory of turbulence,” Dokl. Acad. Nauk SSSR 257 (6), 1319–1322 (1981).ADSGoogle Scholar
  87. 85.
    M. A. Gol’dshtik, Dynamic, different-weight and flow structures in turbulence,” Turbulence Structure, Ed. by M.A. Gol’dshtik (Institute of Thermal Physics, Siberian Branch, Academy of Sciences of USSR, 1982), p. 5–12 [in Russian].Google Scholar
  88. 86.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures in a turbulent atmosphere,” Solnechno-Zemnaya Fiz. Is. 14, p. 97–113 (2009).Google Scholar
  89. 87.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Problem of Coherent Turbulence,” Vestn. MGTU “Stankin” 24 (1), p. 103–107 (2013).Google Scholar
  90. 88.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Approximations of the synoptic spectra of atmospheric turbulence by sums of spectra of coherent structures,” Proc. SPIE 9910, 99101 (2016).ADSGoogle Scholar
  91. 89.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent structures—elementary components of atmospheric turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), 236–238 (2012).Google Scholar
  92. 90.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. M. Grigoriev, and P. G. Kovadlo, “The solitonic hydrodynamical turbulence,” in Proc. VI Int. Conf. “Solitons Collapses and Turbulence: Achievements Developments and Perspectives” (Novosibirsk, 2012), p. 108–109 [in Russian].Google Scholar
  93. 91.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent components of turbulence,” in Abstracts of Intern. Conf. Devoted to the Memory of Acad. A.M. Obukhov “Turbulence and Atmospheric and Climate Dynamics”. Vol. I. Turbulence (GEOS, Moscow, 2013), p. 43–47 [in Russian].Google Scholar
  94. 92.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Coherent Ccomponents of Synoptical Spectra of Atmospheric Turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 8 (8/3), p. 206–209 (2015).Google Scholar
  95. 93.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “ Simulation of coherent structures (topological solitons) inside closed rooms by solving numerically hydrodynamic equations,” Opt. Atmos. Okeana 28 (2), p. 120–133 (2015).Google Scholar
  96. 94.
    V. P. Lukin, L. A. Bol’basova, and V. V. Nosov, “Comparison of Kolmogorov’s and coherent turbulence,” Appl. Opt. 53 (10), B231–B236 (2014).CrossRefGoogle Scholar
  97. 95.
    V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Usp. Sovr. Estestv. No. 12, 369–377 (2014).Google Scholar
  98. 96.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Recommendations for the site selection of sites for the ground-based astronomical telescopes,” Opt. Atmos. Okeana 23 (12), 1099–1110 (2010).Google Scholar
  99. 97.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Optimal place for ground-based short-wave receivers of atmospheric telecommunication systems,” Radiotekh. Telekommunikatsionnye Sist. No. 3, 76–82 (2011).Google Scholar
  100. 98.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Practical recommendations for the selection of sites for the ground-based astronomical telescopes,” Solnechno-Zemnaya Fiz. Is. 18, 86–97 (2011).Google Scholar
  101. 99.
    A. A. Azbukin, A. Ya. Bogushevich, V. S. Il’ichevskii, V. A. Korol’kov, A. A. Tikhomirov, and V. D. Shelevoi, “Automated ultrasonic meteorological complex AMK-03,” Meteorol. Gidrol. No. 11, 89–97 (2006).Google Scholar
  102. 100.
    S. Popinet, The Gerris Flow Solver. A free, open source, general-purpose fluid mechanics code. 2001–2015. http://gfs.sf.net. Cited October 3, 2018.Google Scholar
  103. 101.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Causes of non-Kolmogorov turbulence in the atmosphere,” Appl. Opt. 55 (12), B163–B168 (2016).CrossRefGoogle Scholar
  104. 102.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Results of measurements of A.N. Kolmogorov and A.M. Obukhov constants in the Kolmogorov–Obukhov law,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–09, 70–77 (2009).Google Scholar
  105. 103.
    V. V. Nosov, V. P. Lukin, and A. V. Torgaev, “Structure function of temperature fluctuations in coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–13, 94–97 (2009).Google Scholar
  106. 104.
    V. V. Nosov, V. P. Lukin, and A. V. Torgaev, “Decrease of the light wave fluctuations in the coherent turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 7296–10, 77–82 (2009).Google Scholar
  107. 105.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Fluctuations of astronomical images in a coherent turbulence,” Izv. Vyssh. Ucheb. Zaved. Fiz. 55 (9/2), 223–225 (2012).Google Scholar
  108. 106.
    V. V. Nosov, V. M. Grigoriev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Intermittency of the astronomical images jitter in the high-mountain observations,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920 (2014).Google Scholar
  109. 107.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, P. G. Papushev, and A. V. Torgaev, “Measurement results of astroclimate parameters of the dome space of AZT-33 telescope of the Sayan Solar Observatory of Institute of Solar-Terrestrial Physics SB RAS,” Solnechno-Zemnaya Fiz. Is. 9, 1–103 (2006).Google Scholar
  110. 108.
    V. P. Lukin, V. V. Nosov, and A. V. Torgaev, “Features of optical image jitter in a random medium with a finite outer scale,” Appl. Opt. 53 (10), B196–B204 (2014).CrossRefGoogle Scholar
  111. 109.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence intermittency effect in high-mountain observations,” Izv. Vyssh. Ucheb. Zaved. Fiz. No. 8/3, 210–213 (2015).Google Scholar
  112. 110.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of air motion along optical paths inside specialized rooms of astronomical telescopes. Numerical simulation,” Opt. Atmos. Okeana 28 (7), 614–621 (2015).Google Scholar
  113. 111.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence structure along special optical paths in astronomical telescopes,” Izv. Vyssh. Ucheb. Zaved. Fiz. 59 (12/2), 134–137 (2016).Google Scholar
  114. 112.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Temporal intermittency of astronomical image jitter variance,” in Proc. III All-Rus. Scientific Conf. “Problems of Military-Applied Geophysics and Control of the State of the Environment” (Mozhaiskii Military-Space Academy, SPb., 2014), vol. 1, p. 292–297 [in Russian].Google Scholar
  115. 113.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of a turbulence above nonuniform heated surfaces. Numerical simulation,” Izv. Vyssh. Ucheb. Zaved. Fiz. 58 (8/3), p. 187–190 (2015).Google Scholar
  116. 114.
    V. V. Nosov, O. N. Emaleev, V. P. Lukin, and E. V. Nosov, “Semiempirical hypotheses of turbulence theory in the anisotropic boundary layer,” Atmos. Ocean. Opt. 18 (10), 756–773 (2005).Google Scholar
  117. 115.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulent scales of the Monin–Obukhov theory of similarity in an anisotropic boundary layer,” in Abstracts of Intern. Conf. Devoted to the Memory of Acad. A.M. Obukhov “Turbulence and Atmospheric and Climate Dynamics”. Vol. I. Turbulence (GEOS, Moscow, 2013), p. 38–43 [in Russian].Google Scholar
  118. 116.
    V. V. Nosov, V. M. Grigor’ev, P. G. Kovadlo, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulent scales of the velocity and temperature in the atmospheric boundary layer,” Izv. Vyssh. Ucheb. Zaved. Fiz. 56 (8/3), 331–333 (2013).Google Scholar
  119. 117.
    P. N. Brandt, “Frequency spectra of solar image motion,” Solar Phys. 7, 187–203 (1969).ADSCrossRefGoogle Scholar
  120. 118.
    P. G. Kovadlo, V. I. Ivanov, and Sh. P. Darchiya, “Photoelectrical detector of solar image jitter,” Issled. Geomagnetizmu, Aeronomii Fiz. Solntsa. Is. 37, 196–202 (1975).Google Scholar
  121. 119.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Structure of air turbulent motion inside Primary mirror shaft at Siberian lidar station of IAO SB RAS. Experiment and simulation,” Opt. Atmos. Okeana 29 (11), 905–910 (2016).Google Scholar
  122. 120.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Turbulence and heat exchange inside the dome room of Lidar Station. Experiment and simulation,” J. Phys.: Conf. Ser. 754 (2), 022008–1 (2016).Google Scholar
  123. 121.
    V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, V. L. Afanas’ev, Yu. Yu. Balega, V. V. Vlasyuk, V. E. Panchuk, and G. V. Yakopov, “Researches of the astroclimate in the Special Astrophysical Observatory of RAS,” Opt. Atmos. Okeana 31 (8), 616–627 (2018).Google Scholar
  124. 122.
    V. E. Panchuk and V. L. Afanas’ev, “Astroclimate of Northern Caucasus—myths and reality, Astrophys. Bull. 66 (2), 233–254 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Nosov
    • 1
  • V. P. Lukin
    • 1
  • E. V. Nosov
    • 1
    Email author
  • A. V. Torgaev
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations