Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 450–458 | Cite as

Statistics of Outer Turbulence Scales in the Surface Air Layer

  • V. A. GladkikhEmail author
  • I. V. Nevzorova
  • S. L. OdintsovEmail author
ACOUSTOOPTICAL AND RADIOOPTICAL METHODS FOR ENVIRONMENTAL STUDIES
  • 10 Downloads

Abstract

The outer turbulence scales of temperature and wind vector components in the surface air layer over urban territory and natural terrain are calculated. Monthly average values of the outer scales and their daily mean dynamics in different months are considered. A technique for calculation of the outer turbulence scales based on the results of parameterization of the structure functions of parameters under study is briefly described.

Keywords:

wind outer scale surface layer temperature turbulence 

Notes

ACKNOWLEDGMENTS

All measurements were performed with the use of the equipment of the Atmosphere Common Use Center of the IAO SB RAS.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    V. V. Nosov, V. P. Lukin, and E. V. Nosov, “Influence of the underlying terrain on the jitter of astronomic images,” Atmos. Ocean. Opt. 17 (4), 321–328 (2004).Google Scholar
  2. 2.
    A. Ziad, R. Conan, A. Tokovinin, F. Martin, and J. Borgnino, “From the grating scale monitor to the generalized seeing monitor,” Appl. Opt. 39 (30), 5415–5425 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ziad, M. Schock, G. A. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, “Comparison of measurements of the outer scale of turbulence by three different techniques,” Appl. Opt. 43 (11), 2316–2324 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    L. A. Bolbasova, P. G. Kovadlo, V. P. Lukin, V. V. Nosov, and A. V. Torgaev, “Features of optical image jitter in a random medium with a finite outer scale,” Atmos. Ocean. Opt. 26 (2), 79–84 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Ziad, “Review of the outer scale of the atmospheric turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 9909, 99091 (2016).Google Scholar
  6. 6.
    E. M. Dewan and N. Grossbard, “The inertial range "outer scale” and optical turbulence," Environ. Fluid Mech. 7, 383–396 (2007).CrossRefGoogle Scholar
  7. 7.
    V. P. Lukin, V. V. Nosov, E. V. Nosov, and A. V. Torgaev, “The effect of atmospheric turbulence scales,” Usp. Sovr. Estestv. No. 1, Part 7, 1179–1183 (2015).Google Scholar
  8. 8.
    E. Martini, A. Freni, F. Cuccoli, and L. Facheris, “Derivation of clear-air turbulence parameters from high-resolution radiosonde data,” J. Atmos. Ocean. Technol. 34 (2), 277–293 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    R. Kh. Almaev and A. A. Suvorov, ““Saturation of irradiance fluctuations in a weakly absorbing turbulent atmosphere,” Izv. Atmos. Ocean. Phys. 44 (3), 334–343 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Guesalaga, B. Neichel, C. M. Correia, T. Butterley, J. Osborn, E. Masciadri, T. Fusco, and J.-F. Sauvage, “On-line estimation of the wavefront outer-scale profile from adaptive optics telemetry,” Mon. Not. R. Astron. Soc. 465 (2), 1984–1994 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    P. Brugger, K. Traumner, and C. Jung, “Evaluation of a procedure to correct spatial averaging in turbulence statistics from Doppler lidar by comparing time series with ultrasonic anemometer,” J. Atmos. Ocean. Technol. 33 (10), 2135–2144 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    S. Klip, “Turbulence anisotropy in the near-surface atmosphere and the evaluation of multiple outer length scales,” Bound.-Lay. Meteorol. 151 (1), 57–77 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    S. T. Salesky, M. Chamecki, and G. G. Katul, “Bouyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows,” Phys. Fluids 25 (10), 105101.Google Scholar
  14. 14.
    H. Liu, R. Yuan, J. Mei, J. Sun, Q. Liu, and Y. Wang, “Scale properties of anisotropic and isotropic turbulence in the urban surface layer,” Bound.-Lay. Meteorol. 165 (2), 277–294 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    E. Simiu, F. A. Potra, and T. N. Nandi, “Determining longitudinal integral turbulence scale in the near-neutral atmospheric surface layer,” Bound.-Lay. Meteorol. 170 (2), 349–355 (2019).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory. No. 7, 21–25 (2009).Google Scholar
  17. 17.
    V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Methodical aspects of estimation of turbulence outer scales,” Usp. sovr. estestv. No. 5, 64–70 (2018).Google Scholar
  18. 18.
    V. A. Gladkikh, I. V., Nevzorova, and S. L. Odintsov, “Comparison of techniques for measurements of turbulence outer scales based on ultrasonic anemometer-thermometer measurements, in Proc. XXIV Intern. Symp. "Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018), p. D279–D282.Google Scholar
  19. 19.
    V. A. Gladkikh, I. V. Nevzorova, and S. L. Odintsov, “Selection of time intervals for estimation of turbulence outer scales,” Proc. XXIV Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018), p. D275–D278.Google Scholar
  20. 20.
    Dzh. Lamli and G. A. Panovskii, Structure of Atmospheric Turbulence (Mir, Moscow, 1966) [in Russian].Google Scholar
  21. 21.
    F. T. M. Newstadt and N. Van Dop, Atmospheric Turbulence and Air Pollution Modelling (Reidel, Dordrecht, 1984).Google Scholar
  22. 22.
    N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  23. 23.
    A. F. Kurbatskii, Introduction in Simulation of Turbulent Transport of Momentum and Scalar (GEO, Novosibirsk, 2007) [in Russian].Google Scholar
  24. 24.
    A. Donateo, D. Cava, and D. Contini, “A case study of performance of different detrending methods in turbulent-flux estimation,” Bound.-Lay. Meteorol. 164 (1), 19–37 (2017).CrossRefGoogle Scholar
  25. 25.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction in Statistical Radiophysics. Part II. Random Fields (Nauka, Moscow, 1978) [in Russian].Google Scholar
  26. 26.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part I. Typical forms of structure functions,” Atmos. Ocean. Opt. 27 (2), 147–153 (2013).CrossRefGoogle Scholar
  27. 27.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of air temperature over an inhomogeneous underlying surface. Part II. Statistics of structure functions’ parameters,” Atmos. Ocean. Opt. 27 (2), 154–163 (2013).CrossRefGoogle Scholar
  28. 28.
    V. A. Gladkikh, I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Structure functions of wind velocity components over an inhomogeneous underlying surface,” Atmos. Ocean. Opt. 28 (3), 273–281 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations