Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 420–429 | Cite as

Simulation of Self-Focusing of Femtosecond Laser Pulses in Air by the Method of Diffraction-Beam Tubes

  • Yu. E. GeintsEmail author
  • A. A. ZemlyanovEmail author
  • O. V. MininaEmail author
NONLINEAR OPTICS
  • 19 Downloads

Abstract

Results of the theoretical study of the propagation of femtosecond pulses of a Ti:Sapphire laser in air under self-focusing and filamentation are presented. The self-focusing of laser pulses is analyzed on the basis of the method of diffraction-beam tubes. The analysis established that specific light structures were formed in a laser beam during self-focusing. One of such structures is an energy-replenishing diffraction-beam tube, which provides the necessary energy for filamentation and has the form of a high-intensity light channel during postfilamentation pulse propagation. The dependences of the radius and power of the energy-replenishing tube on the initial beam radius and peak power at a fixed pulse length are derived. It is revealed that the energy consumption of radiation for the filamentation decreases with an increase in the beam radius. The peak power contained in the energy-replenishing light tube during the postfilamentation laser pulse propagation does not exceed the critical self-focusing power of a Gaussian beam and weakly depends on the initial pulse parameters.

Keywords:

femtosecond laser pulses self-focusing filamentation diffraction-beam tube energy-replenishing tube postfilamentation light channel 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    G. A. Askar’yan, “The effect of the gradient of high-intensity electromagnetic beam field on electrons and atoms,” ZhETF 42 (6), 1567–1570 (1962).Google Scholar
  2. 2.
    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56, 123–140 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Progr. Phys. 81 (2), 026001 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    Laser Filamentation: Mathematical Methods and Models, Ed. by A.D. Bandrauk, E. Lorin, and J.V. Moloney (Springer, 2016).zbMATHGoogle Scholar
  5. 5.
    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and V. K. Oshlakov, Filamentation of Femtosecond Laser Pulses in Air, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2017) [in Russian].Google Scholar
  6. 6.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air,” Atmos. Ocean. Opt. 25 (2), 97–105 (2012).CrossRefGoogle Scholar
  7. 7.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing,” Atmos. Ocean. Opt. 27 (6), 463–474 (2014).CrossRefGoogle Scholar
  8. 8.
    A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, “Dynamics of light structures during filamentation of femtosecond laser pulses in air,” Atmos. Ocean. Opt. 29 (5), 395–403 (2016).CrossRefGoogle Scholar
  9. 9.
    Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, “Diffraction-beam optics of filamentation: I—Formalism of diffraction beams and light tubes,” Atmos. Ocean. Opt. 31 (6), 611–618 (2018).CrossRefGoogle Scholar
  10. 10.
    Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, “Diffraction-beam optics of filamentation: II—Diffraction-beam pattern of laser pulse filamentation,” Atmos. Ocean. Opt. 31 (6), 619–625 (2018).CrossRefGoogle Scholar
  11. 11.
    R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, Berlin, 2008).Google Scholar
  12. 12.
    O. G. Kosareva, V. P. Kandidov, A. Brodeur, and S. Chin, “From filamentation in condensed media to filamentation in gases,” J. Nonlinear Opt. Phys. Mater. 6 (4), 485–494 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    R. Y. Ciao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13 (15), 479–482 (1964).ADSCrossRefGoogle Scholar
  14. 14.
    W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, “Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80 (7), 857–860 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    Zuoqiang Hao, Jie Zhang, Xin Lu, Tingting Xi, Zhe Zhang, and Zhaohua Wang, “Energy interchange between large-scale free propagating filaments and its background reservoir,” Opt. Soc. Am. B 26 (3), 499–502 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Talanov, “Self-similar wave beams in nonlinear dielectrics,” Izv. Vyssh. Ucheb. Zaved. Radiofiz. 9 (2), 410–412 (1966).Google Scholar
  17. 17.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatgiz, Moscow, 1966) [in Russian].Google Scholar
  18. 18.
    S. H. Vlasov, L. V. Piskunova, and V. I. Talanov, “Structure of the field near a singularity arising from self-focusing in a cubically nonlinear medium,” JETP 75 (5), 808–811 (1978).ADSGoogle Scholar
  19. 19.
    T. A. Gorbushina, L. M. Degtyarev, and V. V. Krylov, Preprint N 51 (Institute of Applied Mathematics, 1976).Google Scholar
  20. 20.
    V. A. Petrishchev and V. I. Talanov, “Transient self-focusing of light,” Qunatum Electron. 1 (6), 587–592 (1971.Google Scholar
  21. 21.
    J. H. Marburger, “Self-focusing: Theory,” Prog. Quantum. Electron. 4 (1), 35–110 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Multiple filamentation of laser beams of different diameters in air along a 150-meter path,” Atmos. Ocean. Opt. 29 (3), 263–266 (2016).CrossRefGoogle Scholar
  23. 23.
    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Global self-focusing and features of multiple filamentation of radiation of a subterawatt Ti:Sapphire laser with a centimeter output aperture along a 150-m path,” Atmos. Ocean. Opt. 31 (1), 31–35 (2018).CrossRefGoogle Scholar
  24. 24.
    G. Mechain, A. Couairon, Y. -B. Andre, C. D' Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, amd R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys. B 79 (3), 379–382 (2004).CrossRefGoogle Scholar
  25. 25.
    G. Mechain, C. D’Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    J.-F. Daigle, O. G. Kosareva, N. A. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284 (14), 3601–3606 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, “Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80 (7), 857–860 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” JETP 14 (6), 924–117 (1966).ADSGoogle Scholar
  29. 29.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations