Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 4, pp 378–386 | Cite as

Retrieval of Carbon Monoxide Total Column in the Atmosphere from High Resolution Atmospheric Spectra

  • T. Yu. ChesnokovaEmail author
  • M. V. Makarova
  • A. V. Chentsov
  • Yu. V. Voronina
  • V. I. Zakharov
  • N. V. Rokotyan
  • B. Langerock
SPECTROSCOPY OF AMBIENT MEDIUM
  • 5 Downloads

Abstract

Carbon monoxide (CO) is a marker of the atmospheric pollution caused by fires and combustion engine emissions. The regular monitoring of the CO content in the atmosphere is needed to control air quality. In this work, the results of CO atmospheric total column retrievals from the solar spectra recorded by Fourier -transform spectrometers at the St. Petersburg (59.88° N, 29.83° E) and Kourovka (57.038° N, 59.545° E) stations are presented. The impact of differences in CO absorption line parameters in modern spectroscopic databases on the accuracy of the CO atmospheric total column retrieved from high resolution spectra is estimated.

Keywords:

carbon monoxide atmospheric transmission spectroscopic databases 

Notes

FUNDING

This work were financially supported by the Program of Fundamental Investigations by State Academies of Sciences (project АААА-А17-117021310147-0) and the Russian Foundation for Basic Research (grant no. 18-05-00011 “Study of reactive gases in the atmosphere by means of FTIR spectrometry”), as well as the project No. 3.6064.2017/8.9 within the basic part of the state assignment and the financial support by Resolution no. 211 of the Russian Federation Government, contract No. 02.A03.21.0006. The discussion of the results and preparation of the publication were supported by the Russian Foundation for Basic Research (grant no. 18-55-53 062 “Monitoring and study of gaseous and aerosol pollution of the atmosphere and greenhouse gases in Moscow and Beijing, based on satellite and ground high resolution spectroscopic technologies”).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    T. T. Van Leeuwen and G. R. van der Werf, “Spatial and temporal variability in the ratio of trace gases emitted from biomass burning,” Atmos. Chem. Phys. 11 (8), 3611–3629 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. F. Arellano, and D. K. Henze, “A 15-year record of CO emissions constrained by MOPITT CO observations,” Atmos. Chem. Phys. 7 (17), 4565–4583 (2017).  https://doi.org/10.5194/acp-17-4565-2017 ADSCrossRefGoogle Scholar
  3. 3.
    L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 15 (11), 7925–7942 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    D. Fu, K. W. Bowman, H. M. Worden, V. Natraj, J. R. Worden, S. Yu, P. Veefkind, I. Aben, J. Landgraf, L. Strow, and Y. Han, “High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI,” Atmos. Meas. Tech. 9 (6), 2567–2579 (2016).CrossRefGoogle Scholar
  5. 5.
    R. R. Buchholz, M. N. Deeter, H. M. Worden, J. Gille, D. P. Edwards, J. W. Hannigan, N. B. Jones, C. Paton-Walsh, D. W. T. Griffith, D. Smale, J. Robinson, K. Strong, S. Conway, R. Sussmann, F. Hase, T. Blumenstock, E. Mahieu, and B. Langerock, “Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC,” Atmos. Meas. Tech. 10 (5), 1927–1956 (2017).CrossRefGoogle Scholar
  6. 6.
    T. Y. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals,” J. Mol. Spectrosc. 327, 171–179 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Retrieval of content of greenhouse gases from atmospheric spectra of solar radiation with the use of different spectroscopic data on absorption lines,” Atmos. Ocean. Opt. 28 (5), 469–475 (2015).CrossRefGoogle Scholar
  8. 8.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.‑M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.‑Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Auwera Vander, “The HITRAN2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9-10), 533–572 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le. Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. -A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Auwera, WagnerG. Vander, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, BennerD. Chris, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J. M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, L. H. Xu, O. M. Lyulin, J. Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Auwera Vander, “The 2009 edition of the GEISA Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.‑M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, J. Auwera, VoroninB. A. Vander, and A. Makie, “The 2015 edition of the GEISA Spectroscopic Database,” J. Mol. Spectrosc. 327, 31–72 (2016).Google Scholar
  13. 13.
    http://mark4sun.jpl.nasa.gov/toon/linelist/linelist.html. Cited September 5, 2018.Google Scholar
  14. 14.
    http://www.ndsc.ncep.noaa.gov. Cited May 19, 2016.Google Scholar
  15. 15.
    G. Li, I. E. Gordon, L. S. Rothman, Y. Tan, S.-M. Hu, and S. Kassi, A. Campargue, and E. S. Medvedev, “Rovibrational line lists for nine isotopologues of the CO Molecule in the X1+ ground electronic state,” Astrophys. J., Suppl. Ser. 216 (1), 15 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    C. R. Pollock, F. R. Petersen, D. A. Jennings, J. S. Wells, and A. G. Maki, “Absolute frequency measurements of the 2-0 band of CO at 2.3 μm; calibration standard frequencies from high resolution color center laser spectroscopy,” J. Mol. Spectrosc., No. 99, 357–368 (1983).Google Scholar
  17. 17.
    D. Mondelain, T. Sala, S. Kassi, D. Romanini, M. Marangoni, and A. Campargue, “Broadband and highly sensitive comb-assisted cavity ring down spectroscopy of CO near 1.57 μm with sub-mhz frequency accuracy,” J. Quant. Spectrosc. Radiat. Transfer 154, 35–43 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    A. Cygan, S. Wojtewicz, G. Kowzan, M. Zaborowski, P. Wcislo, J. Nawrocki, P. Krehlik, Śliwczyński, M. Lipiński, P. Maslowski, R. Ciurylo, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202–1 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Tan, J. Wang, X. Q. Zhao, A. W. Liu, and S. M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transfer 187, 274–279 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Oceanic Opt. 8 (10), 847–850 (1995).Google Scholar
  21. 21.
    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, “AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-86-0110. Environ. Res. Paper, No. 954 (Air Force Geophysics Laboratory, 1986).Google Scholar
  22. 22.
    Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg Russia,” J. Mol. Spectrosc. 323, 2–14 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Ocean. Opt. 23 (2), 161–164 (2010).CrossRefGoogle Scholar
  24. 24.
    www.qa4ecv.eu. Cited September 5, 2018.Google Scholar
  25. 25.
    F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    https://www.esrl.noaa.gov/psd/data/reanalysis. Cited September 5, 2018.Google Scholar
  27. 27.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77, 437–471 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    https://www2.acom.ucar.edu. Cited September 5, 2018.Google Scholar
  29. 29.
    K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.‑M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov, “Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing),” Atmos. Chem. Phys. 14, 5943–5957 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    D. Wunch, G. C. Toon, J. F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369 (1943), 2087–2112 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. Yu. Chesnokova
    • 1
    Email author
  • M. V. Makarova
    • 2
  • A. V. Chentsov
    • 1
  • Yu. V. Voronina
    • 1
  • V. I. Zakharov
    • 3
    • 4
  • N. V. Rokotyan
    • 3
  • B. Langerock
    • 5
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.B.N. Yeltsin Ural Federal State UniversityYekaterinburgRussia
  4. 4.Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  5. 5.Royal Belgian Institute for Space Aeronomy BIRA-IASBBrusselsBelgium

Personalised recommendations