Skip to main content
Log in

Retrieval of Carbon Monoxide Total Column in the Atmosphere from High Resolution Atmospheric Spectra

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is a marker of the atmospheric pollution caused by fires and combustion engine emissions. The regular monitoring of the CO content in the atmosphere is needed to control air quality. In this work, the results of CO atmospheric total column retrievals from the solar spectra recorded by Fourier -transform spectrometers at the St. Petersburg (59.88° N, 29.83° E) and Kourovka (57.038° N, 59.545° E) stations are presented. The impact of differences in CO absorption line parameters in modern spectroscopic databases on the accuracy of the CO atmospheric total column retrieved from high resolution spectra is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. T. Van Leeuwen and G. R. van der Werf, “Spatial and temporal variability in the ratio of trace gases emitted from biomass burning,” Atmos. Chem. Phys. 11 (8), 3611–3629 (2011).

    Article  ADS  Google Scholar 

  2. Z. Jiang, J. R. Worden, H. Worden, M. Deeter, D. B. A. Jones, A. F. Arellano, and D. K. Henze, “A 15-year record of CO emissions constrained by MOPITT CO observations,” Atmos. Chem. Phys. 7 (17), 4565–4583 (2017). https://doi.org/10.5194/acp-17-4565-2017

    Article  ADS  Google Scholar 

  3. L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 15 (11), 7925–7942 (2011).

    Article  ADS  Google Scholar 

  4. D. Fu, K. W. Bowman, H. M. Worden, V. Natraj, J. R. Worden, S. Yu, P. Veefkind, I. Aben, J. Landgraf, L. Strow, and Y. Han, “High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI,” Atmos. Meas. Tech. 9 (6), 2567–2579 (2016).

    Article  Google Scholar 

  5. R. R. Buchholz, M. N. Deeter, H. M. Worden, J. Gille, D. P. Edwards, J. W. Hannigan, N. B. Jones, C. Paton-Walsh, D. W. T. Griffith, D. Smale, J. Robinson, K. Strong, S. Conway, R. Sussmann, F. Hase, T. Blumenstock, E. Mahieu, and B. Langerock, “Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC,” Atmos. Meas. Tech. 10 (5), 1927–1956 (2017).

    Article  Google Scholar 

  6. T. Y. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals,” J. Mol. Spectrosc. 327, 171–179 (2016).

    Article  ADS  Google Scholar 

  7. T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Retrieval of content of greenhouse gases from atmospheric spectra of solar radiation with the use of different spectroscopic data on absorption lines,” Atmos. Ocean. Opt. 28 (5), 469–475 (2015).

    Article  Google Scholar 

  8. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.‑M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.‑Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Auwera Vander, “The HITRAN2008 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9-10), 533–572 (2009).

    Article  ADS  Google Scholar 

  9. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, BennerD. Chris, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le. Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  10. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. -A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Auwera, WagnerG. Vander, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  11. N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, BennerD. Chris, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J. M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, L. H. Xu, O. M. Lyulin, J. Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Auwera Vander, “The 2009 edition of the GEISA Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).

    Article  ADS  Google Scholar 

  12. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.‑M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, J. Auwera, VoroninB. A. Vander, and A. Makie, “The 2015 edition of the GEISA Spectroscopic Database,” J. Mol. Spectrosc. 327, 31–72 (2016).

  13. http://mark4sun.jpl.nasa.gov/toon/linelist/linelist.html. Cited September 5, 2018.

  14. http://www.ndsc.ncep.noaa.gov. Cited May 19, 2016.

  15. G. Li, I. E. Gordon, L. S. Rothman, Y. Tan, S.-M. Hu, and S. Kassi, A. Campargue, and E. S. Medvedev, “Rovibrational line lists for nine isotopologues of the CO Molecule in the X1+ ground electronic state,” Astrophys. J., Suppl. Ser. 216 (1), 15 (2015).

    Article  ADS  Google Scholar 

  16. C. R. Pollock, F. R. Petersen, D. A. Jennings, J. S. Wells, and A. G. Maki, “Absolute frequency measurements of the 2-0 band of CO at 2.3 μm; calibration standard frequencies from high resolution color center laser spectroscopy,” J. Mol. Spectrosc., No. 99, 357–368 (1983).

  17. D. Mondelain, T. Sala, S. Kassi, D. Romanini, M. Marangoni, and A. Campargue, “Broadband and highly sensitive comb-assisted cavity ring down spectroscopy of CO near 1.57 μm with sub-mhz frequency accuracy,” J. Quant. Spectrosc. Radiat. Transfer 154, 35–43 (2015).

    Article  ADS  Google Scholar 

  18. A. Cygan, S. Wojtewicz, G. Kowzan, M. Zaborowski, P. Wcislo, J. Nawrocki, P. Krehlik, Śliwczyński, M. Lipiński, P. Maslowski, R. Ciurylo, and D. Lisak, “Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques,” J. Chem. Phys. 144, 214202–1 (2016).

    Article  ADS  Google Scholar 

  19. Y. Tan, J. Wang, X. Q. Zhao, A. W. Liu, and S. M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transfer 187, 274–279 (2017).

    Article  ADS  Google Scholar 

  20. A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Oceanic Opt. 8 (10), 847–850 (1995).

    Google Scholar 

  21. G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, “AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-86-0110. Environ. Res. Paper, No. 954 (Air Force Geophysics Laboratory, 1986).

    Google Scholar 

  22. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, “Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg Russia,” J. Mol. Spectrosc. 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  23. A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Ocean. Opt. 23 (2), 161–164 (2010).

    Article  Google Scholar 

  24. www.qa4ecv.eu. Cited September 5, 2018.

  25. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Hopfner, N. B. Jones, C. P. Rinsland, and S. W. Wood, “Intercomparison of retrieval codes used for the analysis of high-resolution ground-based FTIR measurements,” J. Quant. Spectrosc. Radiat. Transfer 87, 25–52 (2004).

    Article  ADS  Google Scholar 

  26. https://www.esrl.noaa.gov/psd/data/reanalysis. Cited September 5, 2018.

  27. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-Year Reanalysis Project,” Bull. Amer. Meteorol. Soc. 77, 437–471 (1996).

    Article  ADS  Google Scholar 

  28. https://www2.acom.ucar.edu. Cited September 5, 2018.

  29. K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.‑M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov, “Developing a Western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing),” Atmos. Chem. Phys. 14, 5943–5957 (2014).

    Article  ADS  Google Scholar 

  30. D. Wunch, G. C. Toon, J. F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369 (1943), 2087–2112 (2011).

Download references

Funding

This work were financially supported by the Program of Fundamental Investigations by State Academies of Sciences (project АААА-А17-117021310147-0) and the Russian Foundation for Basic Research (grant no. 18-05-00011 “Study of reactive gases in the atmosphere by means of FTIR spectrometry”), as well as the project No. 3.6064.2017/8.9 within the basic part of the state assignment and the financial support by Resolution no. 211 of the Russian Federation Government, contract No. 02.A03.21.0006. The discussion of the results and preparation of the publication were supported by the Russian Foundation for Basic Research (grant no. 18-55-53 062 “Monitoring and study of gaseous and aerosol pollution of the atmosphere and greenhouse gases in Moscow and Beijing, based on satellite and ground high resolution spectroscopic technologies”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Chesnokova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, T.Y., Makarova, M.V., Chentsov, A.V. et al. Retrieval of Carbon Monoxide Total Column in the Atmosphere from High Resolution Atmospheric Spectra. Atmos Ocean Opt 32, 378–386 (2019). https://doi.org/10.1134/S1024856019040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019040031

Keywords:

Navigation