Atmospheric and Oceanic Optics

, Volume 32, Issue 3, pp 266–274 | Cite as

Water Vapor and Carbon Monoxide Broadening and Line Shifts Inside Aerogel Nanopores

  • V. I. StarikovEmail author


Line halfwidths and shifts are calculated for water vapor and carbon monoxide confined in nanoporous media. Physically adsorbed H2O and CO molecules are considered as scattering centers. The influence of changes in the rotational structure of levels in physically adsorbed molecules is numerically analyzed. The comparison with the existing experimental data is performed.


water vapor carbon monoxide nanopores halfwidth and shift of spectral lines 



  1. 1.
    P. E. Wagner, R. M. Somers, and J. L. Jenkins, “Line broadening and relaxation of three microwave transitions in ammonia by wall and intermolecular collisions,” J. Phys. B 14 (24), 4763–4770 (1981).CrossRefGoogle Scholar
  2. 2.
    S. C. M. Luijendijk, “The effect of wall collisions on the shape of microwave absorption lines,” J. Phys. B 8 (18), 2995–3000 (1975).CrossRefGoogle Scholar
  3. 3.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26062–26067 (2010).CrossRefGoogle Scholar
  4. 4.
    T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).CrossRefGoogle Scholar
  5. 5.
    J.-M. Hartmann, C. Boulet, AuweraJ. Vander, H. El Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).CrossRefGoogle Scholar
  6. 6.
    J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A 87 (3), 032510-1–10 (2013).Google Scholar
  7. 7.
    T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110 (2), 147–154 (2013).CrossRefGoogle Scholar
  8. 8.
    N. E. Lugina and V. I. Starikov, “Broadening of rovibrational absorption lines of carbon monoxide and dioxide molecules as a result of collisions with walls,” Rus. Phys. J. 55 (6), 657–663 (2012).CrossRefGoogle Scholar
  9. 9.
    A. M. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 1. Measurements and calculations,” Atmos. Ocean. Opt. 27 (5), 372–380 (2014).CrossRefGoogle Scholar
  10. 10.
    A. M. Solodov, T. M. Petrova, A. A. Solodov, and V. I. Starikov, “Fourier spectroscopy of water vapor in the volume of aerogel nanopores. Part 2. Calculation of broadening and shift of spectral lines by adsorbed molecules,” Atmos. Ocean. Opt. 28 (3), 232–235 (2015).Google Scholar
  11. 11.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the relaxation dependence of line half-width for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).CrossRefGoogle Scholar
  12. 12.
    V. I. Starikov and A. A. Solodov, “Line broadening of carbon oxide in the volume of aerogel nanopores,” Atmos. Ocean. Opt. 30 (5), 417–421 (2017).CrossRefGoogle Scholar
  13. 13.
    R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73 (11), 5432–5450 (1980).CrossRefGoogle Scholar
  14. 14.
    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. Paris 40 (1979).Google Scholar
  15. 15.
    V. I. Starikov and N. N. Lavrent’eva, Collisional Broadening of Spectral Lines of Atmospheric Gas Molecules (Publishing House of IAO SB RAS, Tomsk, 2006) [in Russian].Google Scholar
  16. 16.
    A. A. Radtsig and B. M. Smirnov, Handbook on Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  17. 17.
    G. Maroulis, “Hyperpolarizability of H2O revisited: Accurate estimate of the basis set limit and the size of electron correlation effects,” Chem. Phys. Lett. 289, 403–411 (1998).CrossRefGoogle Scholar
  18. 18.
    O. A. Aktsipetrov, “Gigantic nonlinear optical phenomena on metal surfaces,” Sorosovskii Obrazovatel’nyi Zh. 7 (7), 109–116 (2001).Google Scholar
  19. 19.
    A. M. Polubotko and V. P. Chelibanov, “The theory of surface enhanced hyper Raman scattering (a review),” Opt. Spectrosc. 120 (1), 86–108 (2016).CrossRefGoogle Scholar
  20. 20.
    C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill Book, 1959).Google Scholar
  21. 21.
    S. N. Andreev, V. P. Makarov, V. I. Tikhonov, and A. A. Volkov, “Ortho and para molecules of water in electric field,” Phys. Chem.-Ph. 1, 1–4 (2007).Google Scholar
  22. 22.
    A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds (Nauka, Moscow, 1972) [in Russian].Google Scholar
  23. 23.
    B. G. Linsen, Physical and Chemical Aspects of Adsorbents and Catalysts (Academic Press, London–New-York, 1970).Google Scholar
  24. 24.
    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Methods in Water Vapor Spectroscopy (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations