Atmospheric and Oceanic Optics

, Volume 32, Issue 3, pp 345–348 | Cite as

The Effect of the Inertia of Aerosol Particles on the Formation of Multistreaming When Moving in a Turbulent Flow

  • E. Z. GribovaEmail author
  • S. E. LosevEmail author


The effect of the inertia of industrial aerosol particles on the formation of multistreaming of their motion in a turbulent atmosphere is studied by methods of numerical simulation. The analysis is carried out with values of diffusion coefficients corresponding to real atmospheric conditions. The results of the study may be useful in interpreting aerosol optical sensing data.


turbulent diffusion aerosol Lagrange and Euler statistics Jacobian multistreaming 



  1. 1.
    S. F. Abdullaev, T. Shukurov, R. Marupov, and B. I. Nazarov, “Research of samples of soil and dust aerosol by method of IR spectroscopy,” Opt. Atmos. Okeana 26 (2), 166–171 (2013).Google Scholar
  2. 2.
    L. I. Svarovskaya, I. G. Yashchenko, and L. K. Altunina “Adaptive monitoring system for assessment of the scale of pollution of territories of oil and gas enterprises,” Opt. Atmos. Okeana 30 (2), 177–183 (2017).Google Scholar
  3. 3.
    I. E. Naats, “Inverse problems of light scattering by aerosol systems interacting with physical fields,” Opt. Atmos. Okeana 2 (10), 940–944 (1989).Google Scholar
  4. 4.
    V. I. Klyatskin and A. I. Saichev “Statistical theory of diffusion of floating admixture in random velocity field,” Zh. Exp. Teor. Fiz. 111 (4), 1297–1313 (1997).Google Scholar
  5. 5.
    A. I. Saichev and W. A. Woyczynski, “Probability distributions of passive tracers in randomly moving media,” in Stochastic Models in Geosystems, Ed. by S.A. Molchanov and W.A. Woyczynski (Springer, New York, 1997).Google Scholar
  6. 6.
    M. R. Maxey, “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech. 174, 441–465 (1987).CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Mazzino, “Two-dimensional turbulent convection,” Phys. Fluids 29 (11), 111 102 (2017).CrossRefGoogle Scholar
  8. 8.
    V. Cvetkovic, A. Fiori, and G. Dagan, “Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer,” J. Hydrol. 543, 101–108 (2016).CrossRefGoogle Scholar
  9. 9.
    V. E. Kurochkin, B. P. Sharfarets, and E. B. Sharfarets, “Review of mathematical models which describe processes of admixture and single particle transport in fluid flows,” Nauch. Priborostroenie 25 (4), 36–42 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Rampf and U. Frisch, “Shell-crossing in quasi-one-dimensional flow,” Mon. Not. R. Astr. Soc. 471, 671 (2017).CrossRefGoogle Scholar
  11. 11.
    S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, “Random non-linear waves in dispersion-free media,” (Nauka, Moscow, 1990) [in Russian].zbMATHGoogle Scholar
  12. 12.
    E. Z. Gribova, “Diffusion of finite-mass particles in a turbulent viscous medium,” Radiophysics. Quantum Electron. 46 (2), 145–149 (2003).CrossRefGoogle Scholar
  13. 13.
    A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].Google Scholar
  14. 14.
    G. T. Csanady, Turbulent Diffusion in the Environment (D. Reidel Publ. Comp., Dordrecht; Boston, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations