Skip to main content
Log in

The Effect of the Inertia of Aerosol Particles on the Formation of Multistreaming When Moving in a Turbulent Flow

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The effect of the inertia of industrial aerosol particles on the formation of multistreaming of their motion in a turbulent atmosphere is studied by methods of numerical simulation. The analysis is carried out with values of diffusion coefficients corresponding to real atmospheric conditions. The results of the study may be useful in interpreting aerosol optical sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. F. Abdullaev, T. Shukurov, R. Marupov, and B. I. Nazarov, “Research of samples of soil and dust aerosol by method of IR spectroscopy,” Opt. Atmos. Okeana 26 (2), 166–171 (2013).

    Google Scholar 

  2. L. I. Svarovskaya, I. G. Yashchenko, and L. K. Altunina “Adaptive monitoring system for assessment of the scale of pollution of territories of oil and gas enterprises,” Opt. Atmos. Okeana 30 (2), 177–183 (2017).

    Google Scholar 

  3. I. E. Naats, “Inverse problems of light scattering by aerosol systems interacting with physical fields,” Opt. Atmos. Okeana 2 (10), 940–944 (1989).

    Google Scholar 

  4. V. I. Klyatskin and A. I. Saichev “Statistical theory of diffusion of floating admixture in random velocity field,” Zh. Exp. Teor. Fiz. 111 (4), 1297–1313 (1997).

    Google Scholar 

  5. A. I. Saichev and W. A. Woyczynski, “Probability distributions of passive tracers in randomly moving media,” in Stochastic Models in Geosystems, Ed. by S.A. Molchanov and W.A. Woyczynski (Springer, New York, 1997).

    Google Scholar 

  6. M. R. Maxey, “The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields,” J. Fluid Mech. 174, 441–465 (1987).

    Article  MATH  ADS  Google Scholar 

  7. A. Mazzino, “Two-dimensional turbulent convection,” Phys. Fluids 29 (11), 111 102 (2017).

    Article  Google Scholar 

  8. V. Cvetkovic, A. Fiori, and G. Dagan, “Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer,” J. Hydrol. 543, 101–108 (2016).

    Article  ADS  Google Scholar 

  9. V. E. Kurochkin, B. P. Sharfarets, and E. B. Sharfarets, “Review of mathematical models which describe processes of admixture and single particle transport in fluid flows,” Nauch. Priborostroenie 25 (4), 36–42 (2015).

    Article  Google Scholar 

  10. C. Rampf and U. Frisch, “Shell-crossing in quasi-one-dimensional flow,” Mon. Not. R. Astr. Soc. 471, 671 (2017).

    Article  ADS  Google Scholar 

  11. S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, “Random non-linear waves in dispersion-free media,” (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  12. E. Z. Gribova, “Diffusion of finite-mass particles in a turbulent viscous medium,” Radiophysics. Quantum Electron. 46 (2), 145–149 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. G. T. Csanady, Turbulent Diffusion in the Environment (D. Reidel Publ. Comp., Dordrecht; Boston, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Z. Gribova or S. E. Losev.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribova, E.Z., Losev, S.E. The Effect of the Inertia of Aerosol Particles on the Formation of Multistreaming When Moving in a Turbulent Flow. Atmos Ocean Opt 32, 345–348 (2019). https://doi.org/10.1134/S1024856019030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019030102

Keywords:

Navigation