Atmospheric and Oceanic Optics

, Volume 32, Issue 3, pp 289–295 | Cite as

Collective Effects in the Formation of an Ensemble of Photonic Nanojets by an Ordered Microassembly of Dielectric Microparticles

  • Yu. E. GeintsEmail author
  • E. K. PaninaEmail author
  • A. A. ZemlyanovEmail author


The results of theoretical studies of spatially localized near-field light structures (photonic nanojets) formed when laser radiation is scattered on a meta-surface having the form of an ordered single-layer assembly of dielectric microparticles (spheres, cones) embedded in a transparent matrix (silicone film) are presented. The behavior of the main parameters of the localized light structures (length, width, and peak intensity) under the effects of light fields of neighboring microparticles is thoroughly analyzed by using computational electrodynamics to solve Maxwell’s equations with the finite-difference time-domain method (FDTD). It is ascertained that the main factors which affect the parameters of photonic nanojets under study are the spatial orientation of the microcones and the depth of their immersion in the silicone matrix. It is shown that several spatial configurations of the microassembly of the cones allow the creation of an ensemble of photonic nanojets with specific parameters, which are unattainable for isolated microcones. Ordered clusters of spherical particles have an advantage in terms of a comprehensive assessment of the parameters of photonic nanojets.


photonic nanojet microassembly of particles dielectric microparticles 



  1. 1.
    K. W. Allen, V. N. Astratov, N. Farahi, and Y. Li, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (New York) 527 (7-8), 513–522 (2015).MathSciNetGoogle Scholar
  2. 2.
    W. Wu, A. Katsnelson, O. G. Memis, and M. Hooman, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18 (2007).Google Scholar
  3. 3.
    P. Ghenuche, J. De Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105, 131 102 (2014).CrossRefGoogle Scholar
  4. 4.
    M. J. Mendes, A. Araujo, A. Vicente, H. Aguas, I. Ferreira, E. Fortunato, and R. Martins, “Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells,” Nano Energy 26, 286–296 (2016).CrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (2), 526–533 (2005).CrossRefGoogle Scholar
  6. 6.
    M.-S. Kim, T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19 (11), 10 206–10 220 (2011).CrossRefGoogle Scholar
  7. 7.
    Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).CrossRefGoogle Scholar
  8. 8.
    D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20 (1), 128–140 (2012).CrossRefGoogle Scholar
  9. 9.
    C. Liberale, S. K. Mohanty, K. S. Mohanty, V. Degiorgioa, S. Cabrinid, A. Carpentierod, E. Ferrarid, D. Cojoc, and E. D. Fabrizio, Proc. SPIE—Int. Soc. Opt. Eng. 6095 (2006).
  10. 10.
    Yu. E. Geints, I. V. Minin, E. K. Panina, A. A. Zemlyanov, and O. V. Minin, “Comparison of photonic nanojets key parameters produced by nonspherical microparticles,” Opt. Quantum Electron. 49 (3) (2017).
  11. 11.
    A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express 20 (8), 9052–9057 (2012).CrossRefGoogle Scholar
  12. 12.
    N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A 92 (4), 1005–1012 (2008).CrossRefGoogle Scholar
  13. 13.
    Z. B. Wang, W. Guo, B. Luk’yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical near-field interaction between neighbouring micro/nano-particles,” J. Laser Micro Nanoeng. 3 (1), 14–18 (2008).CrossRefGoogle Scholar
  14. 14.
    N. Bityurin, A. Afanasiev, V. Bredikhin, A. Alexandrov, N. Agareva, A. Pikulin, I. Ilyakov, A. Shishkin, and R. Akhmedzhanov, “Colloidal particle lens arrays-assisted nano-patterning by harmonics of a femtosecond laser,” Opt. Express 21 (18), 21 485–21 490 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Rizzato, E. Primiceri, A. G. Monteduro, A. Colombelli, A. Leo, M. G. Manera, R. Rella, and G. Maruccio, “Interaction-tailored organization of large-area colloidal assemblies,” Beilstein J. Nanotechnol. 9, 1582–1593 (2018).CrossRefGoogle Scholar
  16. 16.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microsphere,” Opt. Commun. 283, 4775–4781 (2010).CrossRefGoogle Scholar
  17. 17.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from dielectric microaxicons,” Quantum Electron. 45 (8), 743–747 (2015).CrossRefGoogle Scholar
  18. 18.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).CrossRefGoogle Scholar
  19. 19.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41 (6), 520–525 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations