Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 3, pp 306–315 | Cite as

The Influence of the Internal Structure of Particles on Optical Properties of Stratospheric Aerosol, Radiative Forcing, and Global Annual Average Temperature

  • V. A. Frol’kisEmail author
  • A. M. KokorinEmail author
ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • 19 Downloads

Abstract

One- and two-phase aerosol particles of stratospheric aerosol are considered. The first ones include homogeneous particles that are liquid drops of a 75% sulfuric acid solution; the second ones, droplets of sulfuric acid with inorganic admixtures dissolved in it. Optical properties of two-phase particles are considered in the approximation of two-layer, enlightened, and quasi-homogeneous spheres. The influence of the internal structure of aerosol particles and parameters of their size distribution on the instantaneous radiative forcing and radiation temperature of the underlying surface for an aerosol layer with an optical depth equal to 0.05 in the visible range is studied. Particles constituting the layer can lead both to the greenhouse and to the antigreenhouse effect. It is shown that the antigreenhouse effect (on the order of 4–8 W/m2) is created by ensembles of two-layer particles: (i) with narrow size distributions and (ii) with wider distributions and average radii not exceeding 0.25–0.40 μm; the greenhouse effect (on the order of 2–6 W/m2) arises at larger average radii and wide distributions.

Keywords:

stratospheric sulfate aerosol two-layer, enlightened, quasi-homogeneous, and homogeneous aerosol particles optical properties instantaneous radiative forcing greenhouse and antigreenhouse effects radiation temperature of the surface greenhouse warming compensation geoengineering 

Notes

REFERENCES

  1. 1.
    IPCC: Climate Change 2013—The Physical Science Basis (Cambridge University Press, 2014).Google Scholar
  2. 2.
    A. Robock, “Volcanic eruption and climate,” Rev. Geophys. 38 (2), 191–219 (2000).CrossRefGoogle Scholar
  3. 3.
    M. I. Budyko, Climate Changes (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  4. 4.
    W. M. Gray, W. M. Frank, M. L. Corrin, and C. A. Stokes, “Weather modification by carbon dust absorption of solar energy,” J. Appl. Meteorol. 15, 355–386 (1976).CrossRefGoogle Scholar
  5. 5.
    M. I. Budyko, G. S. Golitsyn, and Yu. A. Izrael’, Global Climate Catastrophes (Gidrometeoizdat, Moscow, 1986) [in Russian].Google Scholar
  6. 6.
    K. Ya. Kondratyev, “Aerosol radiative forcing,” Atmos. Ocean. Opt. 16 (1), 1–12 (2003).Google Scholar
  7. 7.
    Yu. A. Izrael’, “An effective approach to climate maintenance on the modern level as the main aim of solution of the climate problem,” Meteorol. Gidrol., No. 10, 5–9 (2005).Google Scholar
  8. 8.
    K. Ya. Kondratyev, “Aerosol and climate studies: Current state and prospects. 3. Aerosol radiative forcing,” Atmos. Ocean. Opt. 19 (7), 505–513 (2006).Google Scholar
  9. 9.
    Macro-Engineering. A Challenge for the Future, Ed. by V. Badescu R.B. Cathcart, and R.D. Schuiling (Springer, Dordrecht, 2006), vol. 54.Google Scholar
  10. 10.
    Possibilities of Preventing the Climate Change and its Negative Consequences. The Kioto Protocol Problem (Nauka, Moscow, 2006) [in Russian].Google Scholar
  11. 11.
    Yu. A. Izrael’, I. I. Borzenkova, and D. A. Severov, “Role of stratospheric aerosols in modern climate preservation,” Meteorol. Gidrol., No. 1, 5–14 (2007).Google Scholar
  12. 12.
    P. J. Rasch, P. J. Crutzen, and D. B. Coleman, “Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size,” Geophys. Rev. Lett. 35, L02809 (2008).Google Scholar
  13. 13.
    G. M. Krekov and P. O. Rakhimov, Optical-Location Model of Continental Aerosol (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  14. 14.
    A. P. Prishivalko, V. A. Babenko, and V. N. Kuz’min, Light scattering and absorption by inhomogeneous and anisotropic spherical particles (Nauka i Tekhnika, Minsk, 1984) [in Russian].Google Scholar
  15. 15.
    L. C. Ivlev, “Aerosol structure in the stratosphere,” in Parameterization of Certain Unpremeditated and Directed Effects on the Atmosphere (LSU, Leningrad, 1984), is. 84, p. 74–89 [in Russian].Google Scholar
  16. 16.
    A. V. Vasil’ev and L. S. Ivlev, “Empirical models and optical parameters of aerosol polydispersions of two-layer spherical particles,” Atmos. Ocean. Opt. 10 (8), 534–539 (1997).Google Scholar
  17. 17.
    L. S. Ivlev and O. M. Korostina, “Calculations of optical parameters of stratospheric aerosol two-layer particles,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 30 (6), 802–806 (1994).Google Scholar
  18. 18.
    L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (NIIKh SpbGU, St. Petersburg, 1999) [in Russian].Google Scholar
  19. 19.
    A. M. Kokorin and K. S. Shifrin, “Influence of humidity on the light-scattering characteristics of radially inhomogeneous aerosol particles in the boundary layer over an ocean,” J. Opt. Technol. 67 (1), 45–49 (2000).CrossRefGoogle Scholar
  20. 20.
    I. L. Karol’ and V. A. Frol’kis, “Energy balance radiative convection model of the global climate,” Meteorol. Gidrol., No. 8, 59–68 (1984).Google Scholar
  21. 21.
    A. E. Aloyan, A. N. Ermakov, and V. O. Arutyunyan, “Aerosols in the troposphere and lower stratosphere. Sulfate particles in northern latitudes,” Opt. Atmos. Okeana 31 (2), 136–142 (2018).Google Scholar
  22. 22.
    A. E. Aloyan, Simulation of the Dynamics and Kinetics of Atmospheric Admixtures and Aerosols (Nauka, Moscow, 2008) [in Russian].Google Scholar
  23. 23.
    A preliminary cloudless standard atmosphere for radiation computation (WMO, 1986).Google Scholar
  24. 24.
    V. E. Zuev and M. V. Kabanov, Modern Problems of Atmospheric Optics, Vol. 4, Optics of Atmospheric Aerosols (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  25. 25.
    A. M. Kokorin, “How moisture in the air affects the light-scattering and -absorption characteristics of radially inhomogeneous aerosol particles in the boundary layer over the sea,” J. Opt. Technol. 79 (12), 748–753 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Ya. Maarov, V. P. Shariv, and L. D. Lomakinav, Optical Parameters of Model Aerosols in the Earth’s Atmosphere (Keldysh Institute of Applied Mathematics, Moscow, 1989) [in Russian]Google Scholar
  27. 27.
    G. L. Stenchikov, I. Kirchner, A. Robock, H.-F. Graf, J. C. Antuna, R. G. Gringer, A. Lambert, and L. Thomason, “Radiative forcing from the 1991 Mount Pinatubo volcanic eruption,” J. Geophys. Res. D 103 (12), 13837–13857 (1998).CrossRefGoogle Scholar
  28. 28.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).CrossRefGoogle Scholar
  29. 29.
    V. A. Frolkis and E. V. Rozanov, “Radiation code for climate and general circulation models,” in IRS'92 Current problems in Atmospheric Radiation (Deepak Publ., Hampton, USA, 1993), p. 176–179.Google Scholar
  30. 30.
    V. A. Frolkis and I. L. Karol’, “Simulation of the effect of stratospheric aerosol dimming parameters on the efficiency of offsetting global greenhouse climate warming,” Atmos. Ocean. Opt. 24 (1), 74–87 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Voeikov Main Geophysical ObservatorySt. PetersburgRussia
  2. 2.St. Petersburg University of Economics (UNECON)St. PetersburgRussia
  3. 3.St. Petersburg State University of Architecture and Civil EngineeringSt. PetersburgRussia

Personalised recommendations