Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 3, pp 361–365 | Cite as

Influence of Substrate Material on the Sensitivity of the Raman Lidar Technique for Detecting Traces of High-Energy Materials

  • S. M. BobrovnikovEmail author
  • E. V. Gorlov
  • V. I. ZharkovEmail author
OPTICAL INSTRUMENTATION
  • 21 Downloads

Abstract

Experimental results on the remote detection of surface traces of some high-energy materials are presented. The detection was performed with the use of a Raman lidar based on a narrow-linewidth excimer KrF laser and a multichannel spectrum analyzer with diffraction spectrograph and time-gated ICCD camera. The sensitivity of the lidar system is estimated for a detection range of 10 m. The influence of a substrate material on the detection sensitivity is analyzed.

Keywords:

lidar Raman scattering remote detection high-energy materials 

Notes

REFERENCES

  1. 1.
    S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Russ. Phys. J. 58 (9), 1217–1225 (2016).CrossRefGoogle Scholar
  2. 2.
    C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18 (6), 5399–5406 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 20°C: A unique scheme for remote detection of explosives,” Appl. Opt. 40 (36), 6677–6681 (2001).CrossRefGoogle Scholar
  4. 4.
    L. A. Skvortsov, Laser Techniques for Remote Detection of Chemical Compounds on the Body Surface (Tekhnosfera, Moscow, 2014) [in Russian].Google Scholar
  5. 5.
    B. G. Ageev, A. V. Klimkin, A. N. Kuryak, K. Yu. Osipov, and Yu. N. Ponomarev, “Remote detector of hazardous substances based on a tunable 13C16O2 laser,” Atmos. Ocean. Opt. 30 (4), 337–341 (2017).CrossRefGoogle Scholar
  6. 6.
    M. N. Baldin, S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. M. Gruznov, V. I. Zharkov, Yu. N. Panchenko, M. V. Pryamov, and G. V. Sakovich, “Effectiveness of combined laser and gas chromatographic remote detection of traces of explosives,” Atmos. Ocean. Opt. 32 (2), 227–233 (2019).CrossRefGoogle Scholar
  7. 7.
    G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. H. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE—Int. Soc. Opt. Eng. 2276, 34–44 (1994).Google Scholar
  8. 8.
    R. Chirico, S. Almaviva, F. Colao, L. Fiorani, M. Nuvoli, D. Murra, I. Menicucci, F. Angelini, and A. Palucci, “Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications,” Sensors 16 (1), 1–18 (2016).CrossRefGoogle Scholar
  9. 9.
    J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59 (6), 769–775 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Jander and R. Noll, “Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy,” Appl. Spectrosc. 63 (5), 559–563 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Moros, J. A. Lorenzo, K. Novotny, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44 (1), 121–130 (2013).CrossRefGoogle Scholar
  12. 12.
    A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Ostmark, “Near real time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants, Explo., Pyrotech. 34 (4), 297–306 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Pettersson, S. Wallin, H. Ostmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection,” Proc. SPIE—Int. Soc. Opt. Eng. 7664, 76641 (2010).Google Scholar
  14. 14.
    R. Forest, F. Babin, D. Gay, N. Ho, O. Pancrati, S. Deblois, S. Desilets, and J. Maheux, “Use of a spectroscopic lidar for standoff explosives detection through Raman spectra,” Proc. SPIE—Int. Soc. Opt. Eng. 8358, 83 580 (2012).Google Scholar
  15. 15.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Experimental estimation of the sensitivity of the UV Raman lidar,” Atmos. Ocean. Opt. 26 (4), 320–325 (2013).CrossRefGoogle Scholar
  16. 16.
    S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and A. V. Puchikin, “Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors,” Appl. Opt. 57 (31), 9381–9387 (2018).CrossRefGoogle Scholar
  17. 17.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Technique for increasing the selectivity of the method of laser fragmentation/laser-induced fluorescence,” Russ. Phys. J. 61 (1), 25–28 (2018).CrossRefGoogle Scholar
  18. 18.
    Laser Monitoring of the Atmosphere, Ed. by E. D. Hinckley (Springer, Berlin, 1976).Google Scholar
  19. 19.
    GOST 31581-2012. Laser Safety. General Safety Requirements for the Design and Operation of Laser Devices (Standartinform, Moscow, 2013) [in Russian].Google Scholar
  20. 20.
    SanPiN 5804-91. Sanitary Norms and Rules of Laser Design and Operation (Moscow, 1992) [in Russian].Google Scholar
  21. 21.
    J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21 (3), 263–273 (1995).CrossRefGoogle Scholar
  22. 22.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect,” Atmos. Oceanic Opt. 30 (6), 604–608 (2017).CrossRefGoogle Scholar
  23. 23.
    Y. N. Panchenko, M. V. Andreev, V. V. Dudarev, N. G. Ivanov, A. V. Pavlinskii, A. V. Puchikin, S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and V. F. Losev, “Narrow-band tunable laser for a lidar facility,” Russ. Phys. J. 55 (6), 609–615 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129 (9), 979–983 (2009).CrossRefGoogle Scholar
  25. 25.
    M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30 (11), 1739–1746 (2008).CrossRefGoogle Scholar
  26. 26.
    T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein, “Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy,” Opt. Mater. Express 3 (6), 755–764 (2013).CrossRefGoogle Scholar
  27. 27.
    A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Adv. 5, 67583–67609 (2015).CrossRefGoogle Scholar
  28. 28.
    W. A. Al-Saidi, S. A. Asher, and P. Norman, “Resonance Raman spectra of TNT and RDX using vibronic theory, excited-state gradient, and complex polarizability approximations,” J. Phys. Chem. A 116, 7862 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations