Skip to main content

Methane Vertical Profile Retrieval from the Thermal and Near-Infrared Atmospheric Spectra


We present a method and algorithm for inverse problem solution in satellite sounding of the atmosphere for retrieval of vertical profiles of optically active gases by joint use of high-resolution thermal and near-infrared atmospheric spectra. To show the capabilities of the method, a computational experiment was performed on retrieving the vertical profile of the main methane isotopologue with simultaneous use of the simulated thermal and near-infrared spectra. The spectra simulated are similar to those measured by TANSO-FTS/GOSAT IR spectrometer. The signal-to-noise ratio in the simulated spectra was set to 350. The model experiments show higher accuracy of retrieval of the methane vertical profile and its total column in the case when both spectral bands (thermal and near-IR) are used in comparison with the case when each band is used separately.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, C. Curry, C. Frankenberg, N. Gedney, L. Hoglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.‑S. Kim, T. Kleinen, P. Krumme, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, S. O’Doherty, F.-J.W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. van der Werf, R. Weiss, C. Wiedinmyer, D. J., Wilton A. Wiltshire, D. Worthy, D. B. Wunch, Xi. Xu, Y. Yoshida, B. Zhang, Z. Zhang, Q. Zhu, “The global methane budget: 2000–2012,” Earth Syst. Sci. Data 8 (2), 697–751 (2016).

    ADS  Article  Google Scholar 

  2. 2

    C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Megie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3 (5), 1495–1508 (2003).

    ADS  Article  Google Scholar 

  3. 3

    National Center for Atmospheric Research. Measurements of pollution in the troposphere (MOPITT). http:// Cited June 20, 2018.

  4. 4

    H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, and V. V. Rozanov, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56 (2), 127–125 (1999).

    ADS  Article  Google Scholar 

  5. 5 Cited June 20, 2018.

  6. 6

    A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, A. B. Uspenskii, F. S. Zavelevich, Yu. M. Golovin, D. A. Kozlov, A. N. Rublev, and A. V. Kukharskii, “IKFS-2 satellite atmospheric sounder. The analysis of measurements of outgoing radiation spectra,” Issled. Zemli Kosmosa, No. 5, 71–78 (2016).

    Google Scholar 

  7. 7

    A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring,” Appl. Opt. 48 (35), 6716–6733 (2009).

    ADS  Article  Google Scholar 

  8. 8

    T. Matsunaga, T. Yokota, Sh. Maksyutov, I. Morino, Yu. Yoshida, M. Saito, M. Ajiro, and O. Uchino, The Statuses of GOSAT and GOSAT-2 Projects at National Institute for Environmental Studies (NIES). Geophys. Res. Abstr. EGU2015/EGU2015-13150.pdf. Cited September 20, 2018.

  9. 9

    D. J. Jacob, A. J. Turner, J. D. Maasakkers, J. Sheng, K. Sun, X. Liu, K. Chance, I. Aben, J. McKeever, and C. Frankenberg, “Satellite observations of atmospheric methane and their value for quantifying methane emissions,” Atmos. Chem. Phys. 16 (22), 14371–14396 (2016).

    ADS  Article  Google Scholar 

  10. 10

    J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (A. DEEPAK Publishing, Hampton, 1985).

    Google Scholar 

  11. 11

    T. A. Sushkevich, Mathematical Models for Radiation Transfer (BINOM. Laboratoriya znanii, Moscow, 2005) [in Russian].

  12. 12

    V. P. Budak and S. V. Korkin, “Modeling of spatial distribution of the atmosphere-scattered radiation polarization coefficient on the base of complete analytical solution of the vector transfer equation,” Atmos. Ocean. Opt. 21 (1), 27–32 (2008).

    Google Scholar 

  13. 13

    T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2). 81–95 (2008).

    Google Scholar 

  14. 14

    V. Budak, G. Kaloshin, O. Shagalov, and V. Zheltov, “Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration,” J. Opt. Soc. Am., A 23 (15), 829–840 (2015).

    Google Scholar 

  15. 15

    B. Fomin and V. Falaleeva, “A polarized atmospheric radiative transfer model for calculations of spectra of the Stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods,” Atmosphere 3 (4), 451–467 (2012).

    ADS  Article  Google Scholar 

  16. 16

    T. B. Zhuravleva and K. M. Firsov, “Algorithms for calculation of sunlight fluxes in the cloudy and cloudless atmosphere,” Atmos. Ocean. Opt. 17 (11), 799–806 (2004).

    Google Scholar 

  17. 17

    S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960).

    MATH  Google Scholar 

  18. 18

    C. D. Rogers, Inverse Methods for Atmospheric Sounding. Theory and Practice (World Scientific Publishing, Singapore, London, 2000).

    Book  Google Scholar 

  19. 19

    I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Radiative transfer code for the thermal and near-infrared regions with multiple scattering,” Atmos. Ocean. Opt. 30 (4), 305–310 (2017).

    Article  Google Scholar 

  20. 20

    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).

    ADS  Article  Google Scholar 

  21. 21

    R. J. Spurr, “VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,” J. Quant. Spectrosc. Radiat. Transfer 102 (2), 316–342 (2006).

    ADS  Article  Google Scholar 

  22. 22

    P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.‑M. Flaud, R. R. Gamache, J. J. Harrison, J.‑M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  23. 23

    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc., No. 77, 437–470 (1996).

  24. 24

    CAMS Reanalysis data and documentation. data+documentation. Cited June 20, 2018.

  25. 25

    J. Gero, R. Knuteson, K. Shiomi, A. Kuze, F. Kataoka, H. Revercomb, D. Tobin, J. Taylor, and F. Best, “GOSAT TANSO FTS TIR band calibration: A five year review,” Proc. SPIE—Int. Soc. Opt. Eng. 9263, 926316–1 (2014).

Download references


This work was supported by the Russian Science Foundation (grant no. 18-11-00024).

Author information



Corresponding authors

Correspondence to I. V. Zadvornykh or K. G. Gribanov.

Additional information

Translated by I. Ptashnik

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zadvornykh, I.V., Gribanov, K.G., Zakharov, V.I. et al. Methane Vertical Profile Retrieval from the Thermal and Near-Infrared Atmospheric Spectra. Atmos Ocean Opt 32, 152–157 (2019).

Download citation


  • remote sensing
  • atmospheric spectra
  • inverse problem
  • methane