Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 152–157 | Cite as

Methane Vertical Profile Retrieval from the Thermal and Near-Infrared Atmospheric Spectra

  • I. V. ZadvornykhEmail author
  • K. G. GribanovEmail author
  • V. I. Zakharov
  • R. Imasu
REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • 40 Downloads

Abstract

We present a method and algorithm for inverse problem solution in satellite sounding of the atmosphere for retrieval of vertical profiles of optically active gases by joint use of high-resolution thermal and near-infrared atmospheric spectra. To show the capabilities of the method, a computational experiment was performed on retrieving the vertical profile of the main methane isotopologue with simultaneous use of the simulated thermal and near-infrared spectra. The spectra simulated are similar to those measured by TANSO-FTS/GOSAT IR spectrometer. The signal-to-noise ratio in the simulated spectra was set to 350. The model experiments show higher accuracy of retrieval of the methane vertical profile and its total column in the case when both spectral bands (thermal and near-IR) are used in comparison with the case when each band is used separately.

Keywords:

remote sensing atmospheric spectra inverse problem methane 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 18-11-00024).

REFERENCES

  1. 1.
    M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, C. Curry, C. Frankenberg, N. Gedney, L. Hoglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.‑S. Kim, T. Kleinen, P. Krumme, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, S. O’Doherty, F.-J.W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. van der Werf, R. Weiss, C. Wiedinmyer, D. J., Wilton A. Wiltshire, D. Worthy, D. B. Wunch, Xi. Xu, Y. Yoshida, B. Zhang, Z. Zhang, Q. Zhu, “The global methane budget: 2000–2012,” Earth Syst. Sci. Data 8 (2), 697–751 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Megie, and P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate applications,” Atmos. Chem. Phys. 3 (5), 1495–1508 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    National Center for Atmospheric Research. Measurements of pollution in the troposphere (MOPITT). http:// www.airs.jpl.nasa.gov/mission_and_instrument/overview. Cited June 20, 2018.Google Scholar
  4. 4.
    H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, and V. V. Rozanov, “SCIAMACHY: Mission objectives and measurement modes,” J. Atmos. Sci. 56 (2), 127–125 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/index.html. Cited June 20, 2018.Google Scholar
  6. 6.
    A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, A. B. Uspenskii, F. S. Zavelevich, Yu. M. Golovin, D. A. Kozlov, A. N. Rublev, and A. V. Kukharskii, “IKFS-2 satellite atmospheric sounder. The analysis of measurements of outgoing radiation spectra,” Issled. Zemli Kosmosa, No. 5, 71–78 (2016).Google Scholar
  7. 7.
    A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring,” Appl. Opt. 48 (35), 6716–6733 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    T. Matsunaga, T. Yokota, Sh. Maksyutov, I. Morino, Yu. Yoshida, M. Saito, M. Ajiro, and O. Uchino, The Statuses of GOSAT and GOSAT-2 Projects at National Institute for Environmental Studies (NIES). Geophys. Res. Abstr. http://www.meetingorganizer.copernicus.org/ EGU2015/EGU2015-13150.pdf. Cited September 20, 2018.Google Scholar
  9. 9.
    D. J. Jacob, A. J. Turner, J. D. Maasakkers, J. Sheng, K. Sun, X. Liu, K. Chance, I. Aben, J. McKeever, and C. Frankenberg, “Satellite observations of atmospheric methane and their value for quantifying methane emissions,” Atmos. Chem. Phys. 16 (22), 14371–14396 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    J. Lenoble, Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures (A. DEEPAK Publishing, Hampton, 1985).Google Scholar
  11. 11.
    T. A. Sushkevich, Mathematical Models for Radiation Transfer (BINOM. Laboratoriya znanii, Moscow, 2005) [in Russian].Google Scholar
  12. 12.
    V. P. Budak and S. V. Korkin, “Modeling of spatial distribution of the atmosphere-scattered radiation polarization coefficient on the base of complete analytical solution of the vector transfer equation,” Atmos. Ocean. Opt. 21 (1), 27–32 (2008).Google Scholar
  13. 13.
    T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2). 81–95 (2008).Google Scholar
  14. 14.
    V. Budak, G. Kaloshin, O. Shagalov, and V. Zheltov, “Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration,” J. Opt. Soc. Am., A 23 (15), 829–840 (2015).Google Scholar
  15. 15.
    B. Fomin and V. Falaleeva, “A polarized atmospheric radiative transfer model for calculations of spectra of the Stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods,” Atmosphere 3 (4), 451–467 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    T. B. Zhuravleva and K. M. Firsov, “Algorithms for calculation of sunlight fluxes in the cloudy and cloudless atmosphere,” Atmos. Ocean. Opt. 17 (11), 799–806 (2004).Google Scholar
  17. 17.
    S. Chandrasekhar, Radiative Transfer (Dover Publications, New York, 1960).zbMATHGoogle Scholar
  18. 18.
    C. D. Rogers, Inverse Methods for Atmospheric Sounding. Theory and Practice (World Scientific Publishing, Singapore, London, 2000).CrossRefGoogle Scholar
  19. 19.
    I. V. Zadvornykh, K. G. Gribanov, V. I. Zakharov, and R. Imasu, “Radiative transfer code for the thermal and near-infrared regions with multiple scattering,” Atmos. Ocean. Opt. 30 (4), 305–310 (2017).CrossRefGoogle Scholar
  20. 20.
    K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and Vl. G. Tyuterev, “A new software tool for radiative transfer calculations and its application to IMG/ADEOS data,” J. Quant. Spectrosc. Radiat. Transfer 68 (4), 435–451 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    R. J. Spurr, “VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,” J. Quant. Spectrosc. Radiat. Transfer 102 (2), 316–342 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.‑M. Flaud, R. R. Gamache, J. J. Harrison, J.‑M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc., No. 77, 437–470 (1996).Google Scholar
  24. 24.
    CAMS Reanalysis data and documentation. www.software.ecmwf.int/wiki/display/CKB/CAMS+Reanalysis+ data+documentation. Cited June 20, 2018.Google Scholar
  25. 25.
    J. Gero, R. Knuteson, K. Shiomi, A. Kuze, F. Kataoka, H. Revercomb, D. Tobin, J. Taylor, and F. Best, “GOSAT TANSO FTS TIR band calibration: A five year review,” Proc. SPIE—Int. Soc. Opt. Eng. 9263, 926316–1 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Natural Sciences and Mathematics, Ural Federal UniversityYekaterinburgRussia
  2. 2.Atmosphere and Ocean Research Institute, The University of TokyoChibaJapan

Personalised recommendations