Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 138–146 | Cite as

Variability in Parameters of the Near-Surface Aerosol Microstructure in Summer according to Results of Inversion of Measurements of Spectral Extinction of Light on a Horizontal Path in Tomsk: Part II–Volume Concentration and Mean Radius of Particles

  • V. V. VeretennikovEmail author
  • S. S. Men’shchikovaEmail author
  • V. N. UzhegovEmail author


The variability of the volume concentration and mean radius of particles of the fine and coarse fractions of surface aerosol in summer has been studied from the results of solution of the inverse problem for spectral measurements of the aerosol extinction coefficient. It has been shown that the main contribution (80%) to the total volume of near-surface aerosol is made by particles of the coarse fraction. The mean radius of fine particles varies from 0.08 to 0.25 μm. The variation range of the mean radius of coarse aerosol is 1.06–3 μm. The influence of atmosphere smokiness on variations in microstructure parameters is considered. The variability of retrieved microstructure parameters of near-surface aerosol is compared with similar results obtained from solar photometry data.


aerosol extinction coefficient near-surface aerosol microstructure volume concentration mean radius of particles inverse problems 



  1. 1.
    V. V. Veretennikov, S. S. Men’shchikova, and V. N. Uzhegov, “Variability in parameters of the near-surface aerosol microstructure in summer according to results of inversion of measurements of spectral extinction of light on a horizontal path in Tomsk: Part I–Geometrical cross section of fine and coarse particles,” Atmos. Ocean. Opt. 32 (2), 128–137 (2019).Google Scholar
  2. 2.
    Chemistry of the Lower Atmosphere, Ed. by S. Rasul (Mir, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    P. Reist, Introduction to Aerosol Science (MacMillan Publishing, 1984).Google Scholar
  4. 4.
    WMO/GAW aerosol measurement procedures: Guidelines and recommendations. GAW Report N 153 (WMO, Geneva, 2003).Google Scholar
  5. 5.
    K. Schafer, A. Harbusch, S. Emeis, P. Koepke, and M. Wiegner, “Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich,” Atmos. Environ. 42, 4036–4046 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    J. Jing, Y. Wu, J. Tao, H. Che, X. Xia, X. Zhang, P. Yan, D. Zhao, and L. Zhang, “Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing,” Particuology. 18, 144–154 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Yu, J. Ma, K. R. Kumar, B. Zhu, J. An, J. He, and M. Li, “Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze river delta,” Sci. Total Environ. 542, 277–291 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    Y. S. Bennouna, V. E. Cachorro, D. Mateos, M. A. Burgos, C. Toledano, B. Torres, and A. M. de Frutos, “Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment,” Atmos. Environ. 140, 261–272 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    E. P. Yausheva, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Long-term variability of aerosol and black carbon concentrations in the atmospheric surface layer as results of 20-years measurements at the IAO aerosol station,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 10466 3I (2017).Google Scholar
  10. 10.
    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29 (9), 2567–2583 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Panchenko, S. A. Terpugova, T. A. Dokukina, V. V. Pol’kin, and E. P. Yausheva, “Long-term variability of aerosol condensation activity in Tomsk,” Atmos. Ocean. Opt. 25 (4). 251–255 (2012).CrossRefGoogle Scholar
  12. 12.
    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part II. Inversion results,” Atmos. Ocean. Opt. 26 (6), 480–491 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations