LED-Based Fourier-Transform Spectroscopy: HD16O Absorption Spectrum in 0.6-μm Spectral Region


A high-resolution vibrational-rotational absorption spectrum of НD16О molecule has been studied in the visible region from 16 600 to 17 400 cm–1 using LED-based Fourier-transform spectroscopy. The spectrum was recorded using a IFS-125M Fourier-transform spectrometer with a resolution of 0.09 cm−1. A high-brightness 3HP LED was used as a source of radiation. For the measurements, we used a White-type multipass cell with an optical path length of 2880 cm. The spectral line parameters (line centers and intensities) were derived from the spectral analysis. The linelist contains more than 300 transitions to (005) and (104) vibrational states. The results obtained have been compared with the calculated and experimental data of other authors.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    S. Joussaume, R. Sadourny, and J. Jouzel, “A general circulation model of water isotope cycles in the atmosphere,” Nature (Gr. Brit.) 311 (5981), 24–29 (1984).

  2. 2

    M. Schneider, F. Hase, and T. Blumenstock, “Ground-based remote sensing of HDO/H2O ratio profiles: Introduction and validation of an innovative retrieval approach,” Atmos. Chem. Phys. 6 (12), 4705–4722 (2006).

    ADS  Article  Google Scholar 

  3. 3

    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Methods in the Water Vapor Molecular Spectroscopy (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  4. 4

    A. D. Bykov, V. A. Kapitanov, O. V. Naumenko, T. M. Petrova, V. I. Serdyukov, and L. N. Sinitsa, “The Laser Spectroscopy of Highly Excited Vibrational States of HD16O,” J. Mol. Spectrosc. 153 (1-2), 197–207 (1992).

    ADS  Article  Google Scholar 

  5. 5

    E. Bertseva, O. Naumenko, and A. Campargue, “The 5VOH overtone transition of HDO,” J. Mol. Spectrosc. 203 (1), 28–36 (2000).

    ADS  Article  Google Scholar 

  6. 6

    A. Campargue, E. Bertseva, and O. Naumenko, “The absorption spectrum of HDO in the 16300–16670 and 18000–18350 cm–1 spectral regions,” J. Mol. Spectrosc. 204 (1), 94–105 (2000).

    ADS  Article  Google Scholar 

  7. 7

    M. Bach, S. Fally, P. Coheur, M. Carleer, A. Jenouvrier, and A. Vandaele, “Line parameters of HDO from high-resolution Fourier transform spectroscopy in the 11500–23000 cm–1 spectral region,” J. Mol. Spectrosc. 232 (2), 341–-350 (2005).

    ADS  Article  Google Scholar 

  8. 8

    B. A. Voronin, O. V. Naumenko, M. Carleer, P.‑F. Coheur, S. Fally, A. Jenouvrier, R. N. Tolchenov, A. C. Vandaele, and J. Tennyson, “HDO absorption spectrum above 11500 cm–1: Assignment and dynamics,” J. Mol. Spectrosc. 244, 87–101 (2007).

    ADS  Article  Google Scholar 

  9. 9

    H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).

    ADS  Article  Google Scholar 

  10. 10

    D. W. Schwenke and H. Partridge, “Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities,” J. Chem. Phys. 113 (16), 6592–6597 (2000).

    ADS  Article  Google Scholar 

  11. 11

    V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasil’chenko, “Highly sensitive fourier transform spectroscopy with LED sources,” J. Mol. Spectrosc. 290, 13–17 (2013).

    ADS  Article  Google Scholar 

  12. 12

    V. I. Serdyukov, “New possibilities of highly sensitive molecular absorption spectra in the visible region of the spectrum,” Atmos. Oceanic Opt. 26, 817–821 (2013).

    Article  Google Scholar 

  13. 13

    V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. and Ocean. Opt. 26, 329–36 (2013).

    Article  Google Scholar 

  14. 14

    http://spectra.iao.ru. Cited May 20, 2018.

  15. 15

    G. V. Yukhnevich, Water IR Spectroscopy (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  16. 16

    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, A. R. Al Derzi, C. Fabri, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, and I. I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).

    ADS  Article  Google Scholar 

  17. 17

    T. V. Kruglova and A.P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).

    ADS  Article  Google Scholar 

  18. 18

    N. Lavrentieva, B. Voronin, O. Naumenko, A. Bykov, and A. Fedorova, “Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars),” Icarus 236, 38 (2014).

    ADS  Article  Google Scholar 

  19. 19

    http://wadis.saga.iao.ru. Cited May 20, 2018.

Download references


This work was supported by the Russian Foundation for Basic Research (grant nos. 16-43-700492 and 17-52-16022).

Author information



Corresponding author

Correspondence to L. N. Sinitsa.

Additional information

Translated by I. Ptashnik

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinitsa, L.N., Serdyukov, V.I., Polovtseva, E.R. et al. LED-Based Fourier-Transform Spectroscopy: HD16O Absorption Spectrum in 0.6-μm Spectral Region. Atmos Ocean Opt 32, 124–127 (2019). https://doi.org/10.1134/S1024856019020118

Download citation


  • Fourier-transform spectroscopy
  • absorption spectrum of HD16O molecule
  • spectral line centers and intensities