Atmospheric and Oceanic Optics

, Volume 32, Issue 2, pp 124–127 | Cite as

LED-Based Fourier-Transform Spectroscopy: HD16O Absorption Spectrum in 0.6-μm Spectral Region

  • L. N. SinitsaEmail author
  • V. I. Serdyukov
  • E. R. Polovtseva
  • A. D. Bykov


A high-resolution vibrational-rotational absorption spectrum of НD16О molecule has been studied in the visible region from 16 600 to 17 400 cm–1 using LED-based Fourier-transform spectroscopy. The spectrum was recorded using a IFS-125M Fourier-transform spectrometer with a resolution of 0.09 cm−1. A high-brightness 3HP LED was used as a source of radiation. For the measurements, we used a White-type multipass cell with an optical path length of 2880 cm. The spectral line parameters (line centers and intensities) were derived from the spectral analysis. The linelist contains more than 300 transitions to (005) and (104) vibrational states. The results obtained have been compared with the calculated and experimental data of other authors.


Fourier-transform spectroscopy absorption spectrum of HD16O molecule spectral line centers and intensities 



This work was supported by the Russian Foundation for Basic Research (grant nos. 16-43-700492 and 17-52-16022).


  1. 1.
    S. Joussaume, R. Sadourny, and J. Jouzel, “A general circulation model of water isotope cycles in the atmosphere,” Nature (Gr. Brit.) 311 (5981), 24–29 (1984).Google Scholar
  2. 2.
    M. Schneider, F. Hase, and T. Blumenstock, “Ground-based remote sensing of HDO/H2O ratio profiles: Introduction and validation of an innovative retrieval approach,” Atmos. Chem. Phys. 6 (12), 4705–4722 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Methods in the Water Vapor Molecular Spectroscopy (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].Google Scholar
  4. 4.
    A. D. Bykov, V. A. Kapitanov, O. V. Naumenko, T. M. Petrova, V. I. Serdyukov, and L. N. Sinitsa, “The Laser Spectroscopy of Highly Excited Vibrational States of HD16O,” J. Mol. Spectrosc. 153 (1-2), 197–207 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    E. Bertseva, O. Naumenko, and A. Campargue, “The 5VOH overtone transition of HDO,” J. Mol. Spectrosc. 203 (1), 28–36 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A. Campargue, E. Bertseva, and O. Naumenko, “The absorption spectrum of HDO in the 16300–16670 and 18000–18350 cm–1 spectral regions,” J. Mol. Spectrosc. 204 (1), 94–105 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. Bach, S. Fally, P. Coheur, M. Carleer, A. Jenouvrier, and A. Vandaele, “Line parameters of HDO from high-resolution Fourier transform spectroscopy in the 11500–23000 cm–1 spectral region,” J. Mol. Spectrosc. 232 (2), 341–-350 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    B. A. Voronin, O. V. Naumenko, M. Carleer, P.‑F. Coheur, S. Fally, A. Jenouvrier, R. N. Tolchenov, A. C. Vandaele, and J. Tennyson, “HDO absorption spectrum above 11500 cm–1: Assignment and dynamics,” J. Mol. Spectrosc. 244, 87–101 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. W. Schwenke and H. Partridge, “Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities,” J. Chem. Phys. 113 (16), 6592–6597 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasil’chenko, “Highly sensitive fourier transform spectroscopy with LED sources,” J. Mol. Spectrosc. 290, 13–17 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Serdyukov, “New possibilities of highly sensitive molecular absorption spectra in the visible region of the spectrum,” Atmos. Oceanic Opt. 26, 817–821 (2013).CrossRefGoogle Scholar
  13. 13.
    V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells,” Atmos. and Ocean. Opt. 26, 329–36 (2013).CrossRefGoogle Scholar
  14. 14. Cited May 20, 2018.Google Scholar
  15. 15.
    G. V. Yukhnevich, Water IR Spectroscopy (Nauka, Moscow, 1973) [in Russian].Google Scholar
  16. 16.
    J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Csaszar, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, A. R. Al Derzi, C. Fabri, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, and I. I. Mizus, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    T. V. Kruglova and A.P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111 (3), 353–356 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    N. Lavrentieva, B. Voronin, O. Naumenko, A. Bykov, and A. Fedorova, “Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars),” Icarus 236, 38 (2014).ADSCrossRefGoogle Scholar
  19. 19. Cited May 20, 2018.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. N. Sinitsa
    • 1
    Email author
  • V. I. Serdyukov
    • 1
  • E. R. Polovtseva
    • 1
  • A. D. Bykov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of ScienceTomskRussia

Personalised recommendations