Skip to main content

The Effect of Phase Aberrations on the Position and Length of the Filamentation Domain


The results of experimental and theoretical studies of femtosecond laser pulse filamentation with use of a bimorph deformable mirror are presented. The mirror allows controlling the position of the filamentation domain throughout a model path due to phase distortions of different parts of a laser beam, determining localization of filaments and high-intensity channels in a beam cross section, and forming long (>100 m) high-intensity (1011–1012 W/cm2) weakly diverging plasma-free channels.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    O. A. Bukin, M. Yu. Babiy, S. S. Golik, A. A. Ilyin, A. M. Kabanov, A. V. Kolesnikov, Yu. N. Kulchin, V. V. Lisitsa, G. G. Matvienko, V. K. Oshlakov, and K. A. Shmirko, “Lidar sensing of the atmosphere with gigawatt laser pulses of femtosecond duration,” Quantum Electron. 44 (6), 563–569 (2014).

    ADS  Article  Google Scholar 

  2. 2

    A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, G. Andriukaitis, T. Flury, A. Pugulys, A. B. Fedotov, J. M. Mikhailova, V. Ya. Panchenko, A. Baltuka, and A. M. Zheltikov, “Post-filament self-trapping of ultrashort laser pulses,” Opt. Lett., No. 39(16), 4659–4662 (2014).

  3. 3

    M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21 (22), 26836–26845 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  5. 5

    D. V. Apeksimov, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, and A. V. Petrov, “Multiple filamentation of laser beams of different diameters in air along a 150-meter path,” Opt. Atmos. Ocean. 29 (3), 263–266 (2016).

    Article  Google Scholar 

  6. 6

    G. Mechain, C. D' Amico, Y. -B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005).

    ADS  Article  Google Scholar 

  7. 7

    D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, A. Yu. Mayor, and A. V. Petrov, “Dynamics of the structure of multiple filamentation domain of laser pulses in glass,” Opt. Atmos. Ocean. 30 (3), 222–225 (2017).

    Article  Google Scholar 

  8. 8

    M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional optical pulse propagation equation,” Phys. Rev. Lett. 89, 283902–1 (2002).

    ADS  Article  Google Scholar 

  9. 9

    Y. R. Shen, R. W. Boyd, and S. G. Lukishova, “Self-focusing: Past and present,” Top. Appl. Phys. 114, 3–19 (2009).

    Article  Google Scholar 

  10. 10

    S. A. Shlenov, A. E. Bezborodov, and A. V. Smirnov, “Parallel algorithm for filamentation of high-power super-short laser pulses,” in Proc. of Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'06) (Las Vegas, USA, 2006), p. 94–98.

  11. 11

    L. Berge, S. Skupin, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002–1 (2004).

    ADS  Article  Google Scholar 

  12. 12

    V. P. Kandidov, “Propagation of a high-power femtosecond pulse filament through a layer of aerosol,” Atmos. Ocean. Opt. 22 (1), 26–34 (2009).

    Article  Google Scholar 

  13. 13

    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, G. G. Matvienko, and V. K. Oshlakov, “Control of the domain of multiple filamentation of terawatt laser pulses along a hundred-meter air path,” Quantum Electron. 45 (5), 408–414 (2015).

    ADS  Article  Google Scholar 

  14. 14

    G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, “Control of Multiple Filamentation in Air,” Opt. Lett. 29 (15), 1772–1774 (2004).

    ADS  Article  Google Scholar 

Download references


The work was financially supported by the Russian Science Foundation (agreement no. 18-77-00028).

Author information



Corresponding authors

Correspondence to D. V. Apeksimov or Yu. E. Geints.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apeksimov, D.V., Geints, Y.E., Zemlyanov, A.A. et al. The Effect of Phase Aberrations on the Position and Length of the Filamentation Domain. Atmos Ocean Opt 32, 109–116 (2019).

Download citation


  • femtosecond laser pulse
  • filamentation
  • deformable mirror