Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 94–102 | Cite as

Episodes with Anomalously High Black Carbon Concentration in Surface Air in the Region of Tiksi Station, Yakutiya

  • A. A. VinogradovaEmail author
  • T. B. TitkovaEmail author
  • Yu. A. IvanovaEmail author


Measurements (2012–2014) of black carbon (BC) concentration in the surface air in the region of Tiksi International Hydrometeorological Observatory, located near the delta of the Lena River, are analyzed. Variations in the BC concentration with different magnitudes and durations are revealed. Anomalous (larger than 1000 ng/m3) peaks of BC concentration are shown to be rarely encountered, predominately in the warm season of the year (May–September), for no longer than two days. The longest episodes of high BC concentration are associated with long-range atmospheric transport of wildfire products. During such episodes, the air temperature and radiation budget significantly change in the surface atmosphere. The increases in the surface air temperature on days when smoke aerosol comes from nearby fires in July may reach 10°C (at the climatic norm 10–11°C).


atmosphere black carbon (BC) Arctic Tiksi long-range atmospheric transport BC sources radiation budget surface air temperature 



The authors would like to thank organizers of websites, ftp://ftp1.esrl.,, https://, Data.php, for providing information and the possibility of its free use. This work was supported in part by the Russian Foundation for Basic Research (grant nos. 17-05-00245 and 18-05-60 183).


  1. 1.
    G. V. Alekseev, “Arctic measurement of the global warming,” Led Sneg 54 (2), 53–68 (2014).Google Scholar
  2. 2.
    AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers (AMAP, Oslo, 2015).Google Scholar
  3. 3.
    P. K. Quinn, T. S. Bates, E. Baum, N. Doubleday, A. M. Fiore, M. Flanner, A. Fridlind, T. J. Garrett, and D. Koch, “Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies,” Atmos. Chem. Phys. 8, 1723–1735 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Vinogradova, N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic,” Atmos. Ocean. Opt. 28 (6), 566–574 (2015).CrossRefGoogle Scholar
  5. 5.
    D. Hirdman, H. Sodemann, S. Eckhardt, J. F. Burkhart, A. Jefferson, T. Mefford, P. K. Quinn, S. Sharma, J. Strom, and A. Stohl, “Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output,” Atmos. Chem. Phys. 10 (2), 669–693 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M.-D. Cheng, “Geolocating Russian sources for Arctic black carbon,” Atmos. Environ. 92 (4), 398–410 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    L. Schmeisser, J. Backman, J. A. Ogren, E. Andrews, E. Asmi, S. Starkweather, T. Uttal, M. Fiebig, S. Sharma, K. Eleftheriadis, S. Vratolis, M. Bergin, P. Tunved, and A. Jefferson, “Seasonality of aerosol optical properties in the Arctic,” Atmos. Chem. Phys. 18 (16), 11599–11622 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    C. Tomasi, A. Kokhanovsky, A. Lupi, C. Ritter, A. Smirnov, N. T. O’Neill, R. S. Stone, B. N. Holben, S. Nyeki, C. Wehrli, A. Stohl, M. Mazzola, C. Lanconelli, V. Vitale, K. Stebel, V. Aaltonen, G. de Leeuw, E. Rodriguez, B. A. Herber, V. F. Radionov, T. Zielinski, T. Petelski, S. M. Sakerin, D. M. Kabanov, Y. Xue, L. Mei, L. Istomina, R. Wagener, B. McArthur, P. S. Sobolewski, R. Kivi, Y. Courcoux, P. Larouche, S. Broccardo, and S. J. Piketh, “Aerosol remote sensing in polar region,” Earth-Sci. Rev. 140, 108–115. (2015). (Cited on June 10, 2018).
  9. 9.
    V. M. Kopeikin, I. A. Repina, E. I. Grechko, and B. I. Ogorodnikov, “Measurements of soot aerosol content in the near-water atmospheric layer in the Southern and Northern hemispheres,” Atmos. Oceanic Opt. 23 (6), 500–507 (2010).CrossRefGoogle Scholar
  10. 10.
    E. P. Yausheva, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Long-term variability of aerosol and Black Carbon concentrations in the atmospheric surface layer as results of 20-year measurements at the IAO Aerosol Station,” Proc. SPIE 10466, 10466 3I (2017).Google Scholar
  11. 11.
    G. S. Golitsyn, E. I. Grechko, Van Genchen, Van Pusai, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv. Atmos. Ocean. Phys. 51 (1), 1–11 (2015).CrossRefGoogle Scholar
  12. 12.
    A. S. Emilenko and V. M. Kopeikin, “Comparison of synchronous measurements of soot and submicron aerosol concentrations in region with different anthropogenic loadings,” Atmos. Ocean. Opt. 22 (4), 421–427 (2009).CrossRefGoogle Scholar
  13. 13.
    V. P. Shevchenko, D. P. Starodymova, A. A. Vinogradova, A. P. Lisitsyn, V. N. Makarov, S. A. Popova, V. V. Sivonen, and V. P. Sivonen, “Elemental and organic carbon in atmospheric aerosols over the northwestern coast of Kandalaksha Bay of the White Sea,” Dokl. Earth Sci. 461 (1), 242–246 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. Backman, L. Schmeisser, A. Virkkyla, J. A. Ogren, E. Asmi, S. Starkweather, S. Sharma, K. Eleftheriadis, T. Uttal, A. Jefferson, M. Bergin, A. Makshtas, P. Tunved, and M. Fiebig, “On aethalometer measurement uncertainties and multiple scattering correction factor for the Arctic,” Atmos. Meas. Tech. 10, 5039–5062 (2017). CrossRefGoogle Scholar
  15. 15.
    E. Asmi, V. Kondratyev, D. Brus, T. Laurila, H. Lihavainen, J. Backman, V. Vakkari, M. Aurela, J. Hatakka, Y. Viisanen, T. Uttal, V. Ivakhov, and A. Makshtas, “Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic,” Atmos. Chem. Phys. 16, 1271–1287 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Vinogradova and A. V. Vasileva, “Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations,” Atmos. Ocean. Opt. 30 (6), 533–541 (2017).CrossRefGoogle Scholar
  17. 17.
    R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories,” Aust. Meteorol. Mag. 47 (4), 295–308 (1998).Google Scholar
  18. 18.
    T. Fukasawa, S. Ohta, N. Murao, S. Yamagata, and V. N. Makarov, “Aerosol observations in the Siberian Arctic,” Proc. NIPR Symp. Polar Meteorol. Glaciol. 11, 150–160 (1997).Google Scholar
  19. 19.
    A. A. Vinogradova, “Remote assessment of the impact of polluted atmosphere on distant territories,” Geofiz. Protsessy Biosfera 13 (4), 5–20 (2014).Google Scholar
  20. 20.
    M. T. Limon-Sanchez, P. Carbajal-Romero, L. Hernandez-Mena, H. Saldarriaga-Norena, A. Lopez-Lopez, R. Cosio-Ramirez, J. L. Arriaga-Colina, and W. Smith, “Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008,” Atmos. Pollut. Res. 2, 358–365 (2011).CrossRefGoogle Scholar
  21. 21.
    Yu. N. Samsonov, S. A. Popova, O. A. Belenko, and O. V. Chankina, “Chemical composition and disperse characteristics of aerosol smoke emission from fires in boreal Siberian forests,” Atmos. Ocean. Opt. 21 (6), 455–462 (2008).Google Scholar
  22. 22.
    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geography, Russian Academy of SciencesMoscowRussia

Personalised recommendations