Optimal Control for the Process of Using Artificial Sulfate Aerosols for Mitigating Global Warming


The optimal control problem for deliberate intervention in the Earth’s climate system with the aim of stabilizing the global surface temperature is considered. The deliberate action on the climate system is implemented via the controlled radiative disturbance created by artificial aerosols injected into the stratosphere. The controlled object is described by a two-component energy-balance model subject to radiative action caused by an increase in the concentration of greenhouse gases in the atmosphere. The human impact on the climate system is specified in accordance with Representative Concentration Pathway (RCP) scenarios, as well as with the scenario corresponding to a 1% increase in atmospheric carbon dioxide per year. The albedo of the artificial aerosol global layer represents the control variable. The optimal control and the corresponding phase trajectory of the climate system are obtained analytically using Pontryagin’s maximum principle. The approach discussed in this paper can be considered as a basis for developing scenarios for deliberate intervention in the climate system using various geoengineering methods.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Climate Change 2013: The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (University Press, New York, Cambridge, 2013)

  2. 2

    Statement on the State of the Global Climate in 2017, Report N 1212 (WMO, Geneva, Switzeland, 2018).

  3. 3

    www.unfccc.int/sites/default/files/paris_agreement_english_.pdf (Cited June 1, 2018).

  4. 4

    J. Rodelj, M. Elzen, N. Hohne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, and M. Meinshausen, “Paris Agreement climate proposals need a boost to keep warming well below 2°C,” Nature 534, 631–639. (2016).

    ADS  Article  Google Scholar 

  5. 5

    P. Brown and K. Caldeira, “Greater future global warming inferred from Earth’s recent energy budget,” Nature 552, 45–50 (2017).

    ADS  Article  Google Scholar 

  6. 6

    A. E. Raftery, A. Zimmer, D. M. W. Frierson, R. Startz, and P. Liu, “Less than 2°C warming by 2100 unlikely,” Nat. Clim. Change 7, 637–641 (2017).

    ADS  Article  Google Scholar 

  7. 7

    D. Jacob, L. Kotova, C. Teichmann, S. P. Sobolowski, R. Vautard, C. Donnelly, A. G. Koutroulis, M. G. Grillakis, I. K. Tsanis, A. Damm, A. Sakalli, and M. T. H. van Vliet, “Climate impacts in Europe under +1.5 °C global warming,” Earth’s Future 6, 264–285 (2018).

    ADS  Article  Google Scholar 

  8. 8

    K. Tanaka and B. C. O’Neill, “The Paris Agreement zero-emissions goal is not always consistent with the 1.5°C and 2°C temperature targets,” Nat. Clim. Change 8, 319–324 (2018).

    ADS  Article  Google Scholar 

  9. 9

    B. Henley and A. King, “Trajectories toward the 1.5 °C Paris target: Modulation by the Interdecadal Pacific Oscillation,” Geophys. Res. Lett. 44, 4256–4262 (2017).

    ADS  Article  Google Scholar 

  10. 10

    K. L. Ricke and D. W. Keith, “Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target,” Phil. Trans. Roy. Soc., A 376, ID 20 160 454 (2018).

  11. 11

    Climate Intervention Requires Enhanced Research, Consideration of Societal and Environmental Impacts, and Policy Development. https://sciencepolicy. agu.org/files/2018/01/Climate-Intervention-Position-Statement-Final-2018-1.pdf (Cited June 1, 2018).

  12. 12

    AGU White Paper 2017: Climate Intervention Requires Enhanced Research, Consideration of Societal Impacts, and Policy Development. https://www.sciencepolicy. agu.org/files/2017/11/AGU-White-Paper-on-Geoengineeging.pdf (Cited June 1, 2018).

  13. 13

    M. I. Budyko, “Technique for climate impact,” Meteorol. Gidrol., No. 2, 91–97 (1974).

  14. 14

    Izrael' Yu.A., “An efficient way to regulate the global climate is the main objective of the solution of the climate problem,” Rus. Meteorol. Hydrol., No. 10, 1–4 (2005).

  15. 15

    P. J. Crutzen, “Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?,” Clim. Change 77, 211–220 (2006).

    ADS  Article  Google Scholar 

  16. 16

    A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Impact of natural and anthropogenic aerosols on the global and regional climates,” Ros. Khim. Zh. LII (5), 112–119 (2008).

    Google Scholar 

  17. 17

    D. W. Keith, :Geoengineering the climate: History and prospect,” Annu. Rev. Energy Environ. 25, 245–284 (2000).

    Article  Google Scholar 

  18. 18

    Yu. A. Izrael’, A. G. Ryaboshapko, and N. N. Petrov, “Comparative analysis of geo-engineering approaches to climate stabilization,” Rus. Meteorol. Hydrol., No. 6, 5–24 (2009).

  19. 19

    A. Robock, A. Marquardt, B. Kravitz, and G. Stenchikov, “Benefits, risks, and costs of stratospheric geoengineering,” Geophys. Res. Lett. 36, L19703 (2009).

    ADS  Article  Google Scholar 

  20. 20

    J. G. Shepherd, “Geoengineering the climate: An overview and update,” Phil. Trans. R. Soc. A 370, 4166–4175 (2009).

    ADS  Article  Google Scholar 

  21. 21

    A. V. Chernokul’skii, A. V. Eliseev, and I. I. Mokhov, “Analytical estimations of the efficiency of climate warming prevention by controlled aerosol emissions into the stratosphere,” Rus. Meteorol. Hydrol., No. 5, 301–309 (2010).

  22. 22

    Yu. A. Izrael’ and A. G. Ryaboshapko, “Climate geoengineering: the feasibility of implementation,” Problemy Ekol. Monitoringa Modelirovaniya Ekosistem 24, 11–24 (2011).

  23. 23

    R. Bellamy, J. Chilvers, N. E. Vaughan, and T. M. Lenton, “A review of climate geoengineering appraisals,” WIREs Clim. Change 3, 597–615 (2012).

    Article  Google Scholar 

  24. 24

    P. J. Irvine, B. Kravitz, M. G. Lawrence, and H. Muri, “An overview of the Earth system science of solar geoengineering,” WIREs Clim. Change 7, 815–833 (2016).

    Article  Google Scholar 

  25. 25

    K. Caldeira and G. Bala, “Reflecting on 50 years of geoen-gineering research,” Earth’s Future 5 (1), 1–17 (2017).

    ADS  Article  Google Scholar 

  26. 26

    B. Kravitz, A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz, “The Geoengineering Model Intercomparison Project (GeoMIP),” Atmos. Sci. Lett. 12, 162–167 (2011).

    Article  Google Scholar 

  27. 27

    H. Schmidt, K. Alterskjær, B. D. Karam, O. Boucher, A. Jones, J. E. Kristjansson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck, “Solar irradiance reduction to counteract radiative forcing from a quadrupling CO2: Climate responses simulated by four earth system models,” Earth Syst. Dynam. 3, 63–78 (2012).

    ADS  Article  Google Scholar 

  28. 28

    B. Kravitz, K. Caldeira, O. Boucher, A. Robock, P. J. Rasch, K. Alterskjær, Karam D. Bou, J. N. S. Cole, C. L. Curry, J. M. Haywood, P. J. Irvine, D. Ji, A. Jones, J. E. Kristjansson, D. J. Lunt, J. C. Moore, U. Niemeier, H. Schmidt, M. Schulz, B. Singh, S. Tilmes, S. Watanabe, S. Yang, and J.‑H. Yoon, “Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP),” J. Geophys. Res. 118, 8320–8332 (2013).

    Google Scholar 

  29. 29

    D. W. Keith, B. Kravitz, and K. Caldeira, “Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing,” Nat. Clim. Change 3, 365–368 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, A. P. Revokatova, and A. G. Ryaboshapko, “The ability of stratospheric climate engineering in stabilizing global mean temperatures and an assessment of possible side effects,” Atmos. Sci. Lett. 15, 140–148 (2014).

    Article  Google Scholar 

  31. 31

    V. P. Parkhomenko, “Simulation of stabilization of the global climate via controllable emissions of stratospheric aserosols,” Matem. Model. Chislennye Metody, No. 2, 115–126 (2014).

    Google Scholar 

  32. 32

    H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe, “The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results,” Geosci. Model Dev. 8, 2279–2292 (2015).

    Google Scholar 

  33. 33

    M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. L. T. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. Thomson, G. J. M. Velders, and D. P. P. van Vuuren, “The RCP green-house gas concentrations and their extensions from 1765 to 2300,” Clim. Change 109, 213–241 (2011).

    Article  Google Scholar 

  34. 34

    A. J. Jarvis, P. C. Young, D. T. Leedal, and A. Chotai, “A robust sequential CO2 emissions strategy based on optimal control of atmospheric CO2 concentrations,” Clim. Change 86, 357–373 (2008).

    ADS  Article  Google Scholar 

  35. 35

    A. J. Jarvis, D. T. Leedal, C. J. Taylor, and P. C. Young, “Stabilizing global mean surface temperature: A feedback control perspective,” Environ. Model. Software 24, 665–674 (2009).

    Article  Google Scholar 

  36. 36

    G. A. Ban-Weiss and K. Caldeira, “Geoengineering as an optimization problem,” Environ. Res. Lett. 5, 034009 (2010).

    ADS  Article  Google Scholar 

  37. 37

    B. Kravitz, D. W. Keith, and A. Jarvis, “Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering,” Clim. Dynam. 43, 243–258 (2014).

    ADS  Article  Google Scholar 

  38. 38

    B. Kravitz, D. G. MacMartin, D. T. Leedal, P. J. Rasch, and A. J. Jarvis, “Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering,” Environ. Res. Lett. 9, 044006 (2014).

    ADS  Article  Google Scholar 

  39. 39

    D. V. Gaskarov, V. B. Kiselev, S. A. Soldatenko, and R. M. Yusupov, Introduction in Geophysical Cybernetics (SPbGUVK, St. Petersburg, 1998) [in Russian].

  40. 40

    S. Soldatenko, “Weather and climate manipulation as an optimal control for adaptive dynamical systems,” Complexity 2017, ID 4615072 (2017).

  41. 41

    J. M. Gregory and J. F. B. Mitchell, “The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment,” Geophys. Res. Lett. 24, 1943–1964 (1997).

    ADS  Article  Google Scholar 

  42. 42

    J. M. Gregory, “Vertical heat transports in the ocean and their effect on time-dependent climate change,” Clim. Dynam. 16, 501–515 (2000).

    ADS  Article  Google Scholar 

  43. 43

    I. M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, “Probing the fast and slow compo-nents of global warming by returning abruptly to preindustrial forcing,” J. Clim. 23, 2418–2427 (2010).

    ADS  Article  Google Scholar 

  44. 44

    O. Geoffroy, D. Saint-Martin, D. J. L. Olivie, A. Voldoire, G. Bellon, and S. Tyteca, “Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments,” J. Clim. 26, 1841–1857 (2012).

    ADS  Article  Google Scholar 

  45. 45

    K. E. Taylor, R. J. Stouffer, and G. A. Meehl, An overview of CMIP5 and the experiment design,” Bull. Am. Meteor. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  46. 46

    A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Global warming mitigation by means of controlled aerosol emissions into stratosphere: Global and regional of temperature response as estimated in IAP RAS CM simulations,” Atmos. Ocean. Opt. 22 (4), 388–395 (2009).

    Article  Google Scholar 

  47. 47

    J. Hansen, A. Lacis, R. Ruedly, and M. Sato, “Potential climate impact of Mount Pinatubo eruption,” Geophys. Res. Lett. 19, 215–218 (1992).

    ADS  Article  Google Scholar 

  48. 48

    S. A. Soldatenko and R. M. Yusupov, “Sensitivity of zero-dimension climate model and its feedback in the context of the problem of the weather and climate control,” Tr. SPIIRAN, No. 3, 5–31 (2017).

    Google Scholar 

  49. 49

    P. J. Rasch, S. Tilmes, R. Turco, A. Robock, L. Oman, C.-C. Chen, G. L. Stenchikov, and R. R. Garcia, “An overview of geoengineering of climate using stratospheric sulphate aerosols,” Phil. Trans. R. Soc., A 366, 4007–4037 (2008).

  50. 50

    J. Hansen, M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, Ja. Perlwitz, Ju. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhang, “Efficacy of climate forcing,” J. Geophys. Res. 110, D18104 (2005).

    ADS  Article  Google Scholar 

  51. 51

    T. M. Lenton and N. E. Vaughan, “The radiative forcing potential of different climate geoengineering options,” Atmos. Chem. Phys. 9, 5539–5561 (2009).

    ADS  Article  Google Scholar 

  52. 52

    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  53. 53

    A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control (John Wiley & Sons, New York, 1975).

    Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to S. A. Soldatenko or R. M. Yusupov.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soldatenko, S.A., Yusupov, R.M. Optimal Control for the Process of Using Artificial Sulfate Aerosols for Mitigating Global Warming. Atmos Ocean Opt 32, 55–63 (2019). https://doi.org/10.1134/S1024856019010172

Download citation


  • optimal control
  • geophysical cybernetics
  • climate engineering
  • weather modification
  • global warming