Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 80–84 | Cite as

Daily Variation in the Radiation Extinction Coefficient due to Midges and Its Dependence on Meteorological Parameters of the Atmosphere in Background Summer Conditions of Western Siberia

  • N. N. ShchelkanovEmail author
OPTICAL MODELS AND DATABASES
  • 9 Downloads

Abstract

It is shown that the daily variation in the radiation extinction coefficient due to midges (RECM) has a statistically significant morning maximum at 09:00. This maximum is not connected with extremes of the air temperature or relative humidity. RECM maxima are observed at air temperatures of 12–17°C and relative air humidity of 60–80%. Correlations between RECM, air temperature, and relative humidity are statistically significant. The slope coefficient of the straight line in dependences of the midges-caused radiation extinction on the air temperature and relative humidity are –0.04 km–1/5°C and +0.04 km–1/20%, respectively. It is revealed that the RECM maxima are observed at winds of 2–4 m/s, directed from boggy forest areas, and minima, at winds of 1–4 m/s, directed from Ob River and dry, mixed, and boreal coniferous forests.

Keywords:

atmosphere extinction coefficient midges daily course summer meteorological parameters Western Siberia 

Notes

REFERENCES

  1. 1.
    A. A. Shtakel’berg, Bloodsucking Mosquitos of Palearctic (Publishing House of Akad. of Sci. of USSR, Moscow, Leningrad, 1937) [in Russian].Google Scholar
  2. 2.
    A. S. Monchadskii, Bloodsucking Two-Winged Flies—Midges (Publishing House of Akad. of Sci. of USSR, Moscow, Leningrad, 1952) [in Russian].Google Scholar
  3. 3.
    V. D. Patrusheva, Mosquitos of Siberia and Far East (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  4. 4.
    A. G. Mirzaeva, Bloodsucking Mosquitos of Siberia and Far East (SB RAS, Novosibirsk, 1989) [in Russian].Google Scholar
  5. 5.
    M. W. Service, Mosquito Ecology: Field Sampling Methods (Elsevier Applied Science, London; New York, 1993).CrossRefGoogle Scholar
  6. 6.
    V. B. Chernyshev, Ecology of Insect (MSU, Moscow, 1996) [in Russian].Google Scholar
  7. 7.
    N. Becker, D. Petric, M. Zgomba, C. Boase, C. Dahl, M. Madon, and A. Kaiser, Mosquitoes and Their Control (Springer, Berlin; Heidelberg, 2003).CrossRefGoogle Scholar
  8. 8.
    A. I. Barashkova and A. D. Reshetnikov, Bloodsucking Two-Winged Flies of Agrocenosis in Yakutia and Protection of Farm Animals from Midges (APNI, Belgorod, 2015) [in Russian].Google Scholar
  9. 9.
    V. V. Vnukovskii, “Materials on fauna and biology of mosquitos (Culicidae) of Tomsk region,” Sib. Med. Zh., No. 2, 17–26 (1926).Google Scholar
  10. 10.
    E. N. Pletnev, “Biology and ecology of mosquitos (Culicidae) of Tomsk region,” Arkhiv Naturalistov, No. 12, 1–27 (1926).Google Scholar
  11. 11.
    J. F. Reinert, “New classification for the composite genus Aedes (Diptera: Cilicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species,” J. Am. Mosq. Control Assoc. 3 (16), 175–188 (2000).Google Scholar
  12. 12.
    A. G. Mirzaeva, “About swarming of bloodsucking mosquitos of Avaritia subgenus of Culicoides genus (Ceratopogonidae),” Sib. Ekol. Zh. 7 (4), 419–423 (2000).Google Scholar
  13. 13.
    N. V. Red’kina, N. V. Ostroverkhova, and G. P. Ostroverkhova, “Fauna of bloodsucking mosquitos (Diptera: Culicidae) in Tomsk,” Vestn. Tom. Gos. Univ., No. 300 (II), 221–227 (2007).Google Scholar
  14. 14.
    A. G. Mirzaeva, Yu. A. Smirnova, Yu. A. Yurchenko, and Yu. A. Kononova, “The study of the fauna and ecology of bloodsucking mosquitos (Diptera: Culicidae) of forest-steppe and steppe regions of Western Siberia,” Parazitologiya 41 (4), 253–267 (2007).Google Scholar
  15. 15.
    N. V. Poltoratskaya and A. G. Mirzaeva, “Detection of mosquitos Aedes sibiricus Danilov et Filippova seldom for Western Siberia, 1978 (Diptera, Culicidae),” Evraziat. Entomol. Zh., 12 (2), 144–146 (2013).Google Scholar
  16. 16.
    N. P. Mezenev, “External effects on the activity of mosquitos attacks and its diurnal dynamics,” Parazitologiya 5 (3), 254–260 (1971).Google Scholar
  17. 17.
    A. G. Mirzaeva and N. P. Glushchenko, “Factors of the dynamics of the population of bloodsucking mosquitos near Novosibirsk Scientific Center,” Evraziat. Entomol. Zh. 7 (3), 268–278 (2008).Google Scholar
  18. 18.
    A. D. Reshetnikov, Z. S. Prokop’ev, A. I. Barashkova, and K. E. Semenova, “Diurnal activity of midges components in north-eastern Yakutia,” Izv. Samar. Nauch. Tsentra Ros. Akad. Nauk 11 (1-2), 147–149 (2009).Google Scholar
  19. 19.
    A. G. Mirzaeva, “Bloodsucking two-winged flies of the north of Krasnoyarsk region. 1. Bloodsucking mosquitos,” Evraziat. Entomol. Zh. 16 (2), 158–172 (2017).Google Scholar
  20. 20.
    A. I. Barashkova, Doctoral Dissertation in Biology (All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Moscow, 2017).Google Scholar
  21. 21.
    N. N. Shchelkanov and V. N. Uzhegov, “Estimates of a midge contribution to the extinction of optical radiation in background summer conditions of Western Siberia,” Atmos. Ocean. Opt. 30 (5), 446–450 (2017).CrossRefGoogle Scholar
  22. 22.
    R. F. Rakhimov, V. N. Uzhegov, E. V. Makienko, and Yu. A. Pkhalagov, “Obtaining the most probable value of the aerosol extinction coefficient of atmospheric haze from long-term series of observations along a near-ground horizontal path,” Atmos. Ocean. Opt. 18 (7), 506–513 (2005).Google Scholar
  23. 23.
    N. N. Shchelkanov, “A generalized method for construction of linear regression and its application to the development of single-parameter aerosol extinction models,” Atmos. Ocean. Opt. 18 (1-2), 77–81 (2005).Google Scholar
  24. 24.
    N. N. Shchelkanov, “Methods for calculation of random errors of the parameters of environment from experimental data,” Opt. Atmos. Okeana 25 (9), 815–821 (2012).Google Scholar
  25. 25.
    N. N. Shchelkanov, “Methods for correcting the atmospheric aerosol optical depth along horizontal and slant paths,” Atmos. Ocean. Opt. 18 (11), 922–924 (2005).Google Scholar
  26. 26.
    N. N. Shchelkanov, “Methods for correction of the aerosol optical thickness of the atmosphere in the wavelength range 0.4 to 12 µm,” Proc. SPIE—Int. Soc. Opt. Eng. 6160, Part 1, 5 (2005).Google Scholar
  27. 27.
    http://lop.iao.ru/RU/fon/meteo/ (Cited March 20, 2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations