Estimation of the Turbulence and Regular Refraction Effect on Laser Beam Parameters in the Atmospheric Boundary Layer: Part 2, Laser Beam Broadening under Strong Regular Refraction

Abstract

Possible deviations of a laser beam from a detector in the case of slant propagation paths are calculated based on air temperature profiles measured in the atmospheric boundary layer. The possible seasonal and diurnal dynamics of the deviations under regular refraction is considered. The cases of simultaneous strong (regular) refraction and significant broadening of a laser beam due to the turbulence effect are revealed and analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    V. P. Lukin, “Possibilities of aiming optical beams through turbulent atmosphere,” Atmos. Ocean. Opt. 18 (1-2), 66–76 (2005).

    Google Scholar 

  2. 2

    S. V. Asanov, Yu. E. Geyntz, A. A. Zemlyanov, A. B. Ignatyev, G. G. Matvienko, V. V. Morozov, and A. V. Tarasenkova, “Forecast of intense near- and mid-IR laser radiation propagation along slant atmospheric paths,” Atmos. Ocean. Opt. 29 (4), 315–323 (2016).

    Article  Google Scholar 

  3. 3

    S. V. Asanov, V. V. Belov, A. D. Bulygin, Yu. E. Geints, V. V. Dudorov, A. A. Zemlyanov, A. B. Ignat’ev, F. Yu. Kanev, V. V. Kolosov, P. A. Konyaev, V. P. Lukin, G. G. Matvienko, V. V. Morozov, V. V. Nosov, Yu. N. Ponomarev, I. V. Ptashnik, and M. V. Tarasenkov, “Optical model of the Earth’s atmosphere for intense laser emission in the near and mid-infrared spectral ranges,” Atmos. Ocean. Opt. 28 (4), 338–345 (2015).

    Google Scholar 

  4. 4

    T. Travouillon, M. Schock, S. Els, R. Riddle, and W. Skidmore, “Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part I: Reproducibility,” Bound.-Layer Meteorol. 141 (2), 273–288 (2011).

    ADS  Article  Google Scholar 

  5. 5

    T. Travouillon, M. Schock, S. Els, R. Riddle, and W. Skidmore, “Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part II: Comparison with independent instruments,” Bound.-Layer Meteorol. 141 (2), 289–300 (2011).

    ADS  Article  Google Scholar 

  6. 6

    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive Index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).

    Article  Google Scholar 

  7. 7

    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 2, Laser beam refraction,” Atmos. Ocean. Opt. 31 (5), 445–450 (2018).

    Article  Google Scholar 

  8. 8

    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).

    Article  Google Scholar 

  9. 9

    E. N. Kadygrov and I. N. Kuznetsova, Methodic Recommendation on the Use of Remote Measurements of Temperature Profiles with Microwave Profilers in the Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].

  10. 10

    A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler locator (sodar) "VOLNA-4M-ST”,” Pribory 202 (4), 37–44 (2017).

    Google Scholar 

  11. 11

    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory 109 (7), 21–25 (2009).

    Google Scholar 

  12. 12

    A. A. Mamysheva and S. L. Odintsov, “Experimental estimate of turbulent kinetic energy in the near-surface layer over urban area,” Opt. Atmos. Okeana 24 (9), 817–827 (2011).

    Google Scholar 

  13. 13

    I. Petenko, G. Mastrantonio, A. Viola, S. Argentini, and I. Pietroni, “Some statistics of the temperature structure parameter in the convective boundary layer observed by sodar,” Bound.-Layer Meteorol. 150 (2), 215–233 (2014).

    ADS  Article  Google Scholar 

  14. 14

    C. E. Wainwright, T. A. Bonin, P. B. Chilson, J. A. Gibbs, E. Fedorovich, and R. D. Palmer, “Methods for evaluating the temperature structure function parameter using unmanned aerial systems and large-eddy simulation,” Bound.-Layer Meteorol. 155 (2), 189–208 (2015).

    ADS  Article  Google Scholar 

  15. 15

    T. A. Bonin, D. C. Goines, A. K. Scott, C. E. Wainwright, J. A. Gibbs, and P. B. Chilson, “Measurement of the temperature structure function parameters with small unmanned aerial system compared with a sodar,” Bound.-Layer Meteorol. 155 (3), 417–434 (2015).

    ADS  Article  Google Scholar 

  16. 16

    L. C. Andrews, R. L. Philips, R. Crabbs, D. Wayne, T. Leclerc, and P. Sauer, “Creating a profile as a function of altitude using scintillation measurements along a slant path,” Proc. SPIE—Int. Soc. Opt. Eng. 8238, 82380 (2012).

  17. 17

    V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).

    Article  Google Scholar 

  18. 18

    D. Sprung, P. Grossmann, and E. Sucher, “Investigation of seasonal and diurnal cycles on the height dependence of optical turbulence in the lower atmospheric boundary layer,” Proc. SPIE—Int. Soc. Opt. Eng. 8517, 85170 (2012).

  19. 19

    D. Sprung, E. Sucher, K. Weiss-Wrana, and K. Stein, “Stability and height dependant variations of the structure function parameters in the lower atmospheric boundary layer investigated from measurements of the long-term experiment VERTURM (Vertical Turbulence Measurements),” Proc. SPIE—Int. Soc. Opt. Eng. 8178, 817809–1 (2011).

  20. 20

    L. V. Antoshkin, N. N. Botygina, L. A. Bol’basova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P. G. Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Oceanic Opt. 30 (3), 291–299 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful for the use of the equipment of the Atmosphere Common Use Center of IAO SB RAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. L. Odintsov.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.L., Gladkikh, V.A., Kamardin, A.P. et al. Estimation of the Turbulence and Regular Refraction Effect on Laser Beam Parameters in the Atmospheric Boundary Layer: Part 2, Laser Beam Broadening under Strong Regular Refraction. Atmos Ocean Opt 32, 26–32 (2019). https://doi.org/10.1134/S1024856019010135

Download citation

Keywords:

  • atmosphere
  • sounding
  • laser radiation
  • refractive index
  • refraction
  • sodar
  • turbulence
  • laser beam broadening