Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 19–25 | Cite as

Estimation of the Turbulence and Regular Refraction Effects on Laser Beam Parameters in the Atmospheric Boundary Layer: Part 1, Coherence Length and Turbulent Broadening

  • S. L. OdintsovEmail author
  • V. A. Gladkikh
  • A. P. Kamardin
  • V. P. Mamyshev
  • I. V. Nevzorova
OPTICS OF STOCHASTICALLY-HETEROGENEOUS MEDIA
  • 10 Downloads

Abstract

The coherence length and the degree of broadening of a laser beam under the turbulence effect are estimated from the results of remote acoustic sounding of the atmospheric boundary layer with a Volna-4M sodar. The daily average profile of the coherence length in different seasons is considered. Corrections to the effective radius of a laser beam due to turbulence and the monthly average values of these corrections are calculated. A noticeable excess of the possible broadening of the laser beam in winter above that in summer was found.

Keywords:

atmosphere sounding coherence laser radiation sodar turbulence laser beam broadening 

Notes

ACKNOWLEDGMENTS

The work was performed with the use of the equipment of the Atmosphere Common Use Center of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences.

REFERENCES

  1. 1.
    V. P. Lukin, “Possibilities of aiming optical beams through turbulent atmosphere,” Atmos. Ocean. Opt. 18 (1-2), 66–76 (2005).Google Scholar
  2. 2.
    S. V. Asanov, Yu. E. Geyntz, A. A. Zemlyanov, A. B. Ignatyev, G. G. Matvienko, V. V. Morozov, and A. V. Tarasenkova, “Forecast of intense near- and mid-IR laser radiation propagation along slant atmospheric paths,” Atmos. Ocean. Opt. 29 (4), 315–323 (2016).CrossRefGoogle Scholar
  3. 3.
    S. V. Asanov, V. V. Belov, A. D. Bulygin, Yu. E. Geints, V. V. Dudorov, A. A. Zemlyanov, A. B. Ignat’ev, F. Yu. Kanev, V. V. Kolosov, P. A. Konyaev, V. P. Lukin, G. G. Matvienko, V. V. Morozov, V. V. Nosov, Yu. N. Ponomarev, I. V. Ptashnik, and M. V. Tarasenkov, “Optical model of the Earth’s atmosphere for intense laser emission in the near and mid-infrared spectral ranges,” Atmos. Ocean. Opt. 28 (4), 338–345 (2015).Google Scholar
  4. 4.
    T. Travouillon, M. Schock, S. Els, R. Riddle, and W. Skidmore, “Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part I: Reproducibility,” Bound.-Layer Meteorol. 141 (2), 273–288 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    T. Travouillon, M. Schock, S. Els, R. Riddle, and W. Skidmore, “Using a sodar to measure optical turbulence and wind speed for the thirty meter telescope site testing. Part II: Comparison with independent instruments,” Bound.-Layer Meteorol. 141 (2), 289–300 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 1, Refractive Index,” Atmos. Ocean. Opt. 31 (5), 437–444 (2018).CrossRefGoogle Scholar
  7. 7.
    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, V. P. Mamyshev, and I. V. Nevzorova, “Estimates of the refractive index and regular refraction of optical waves in the atmospheric boundary layer: Part 2, Laser beam refraction,” Atmos. Ocean. Opt. 31 (5), 445–450 (2018).CrossRefGoogle Scholar
  8. 8.
    S. L. Odintsov, V. A. Gladkikh, A. P. Kamardin, and I. V. Nevzorova, “Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters,” Atmos. Ocean. Opt. 31 (6), 553–563 (2018).CrossRefGoogle Scholar
  9. 9.
    E. N. Kadygrov and I. N. Kuznetsova, Methodic Recommendation on the Use of Remote Measurements of Temperature Profiles with Microwave Profilers in the Boundary Layer: Theory and Practice (Fizmatkniga, Dolgoprudnyi, 2015) [in Russian].Google Scholar
  10. 10.
    A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Meteorological acoustic Doppler locator (sodar) “VOLNA-4M-ST”,” Pribory 202 (4), 37–44 (2017).Google Scholar
  11. 11.
    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory 109 (7), 21–25 (2009).Google Scholar
  12. 12.
    A. A. Mamysheva and S. L. Odintsov, “Experimental estimate of turbulent kinetic energy in the near-surface layer over urban area,” Opt. Atmos. Okeana 24 (9), 817–827 (2011).Google Scholar
  13. 13.
    I. Petenko, G. Mastrantonio, A. Viola, S. Argentini, and I. Pietroni, “Some statistics of the temperature structure parameter in the convective boundary layer observed by sodar,” Bound.-Layer Meteorol. 150 (2), 215–233 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    C. E. Wainwright, T. A. Bonin, P. B. Chilson, J. A. Gibbs, E. Fedorovich, and R. D. Palmer, “Methods for evaluating the temperature structure function parameter using unmanned aerial systems and large-eddy simulation,” Bound.-Layer Meteorol. 155 (2), 189–208 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    T. A. Bonin, D. C. Goines, A. K. Scott, C. E. Wainwright, J. A. Gibbs, and P. B. Chilson, “Measurement of the temperature structure function parameters with small unmanned aerial system compared with a sodar,” Bound.-Layer Meteorol. 155 (3), 417–434 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    L. C. Andrews, R. L. Philips, R. Crabbs, D. Wayne, T. Leclerc, and P. Sauer, “Creating a profile as a function of altitude using scintillation measurements along a slant path,” Proc. SPIE—Int. Soc. Opt. Eng. 8238, 82380 (2012).Google Scholar
  17. 17.
    V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).CrossRefGoogle Scholar
  18. 18.
    D. Sprung, P. Grossmann, and E. Sucher, “Investigation of seasonal and diurnal cycles on the height dependence of optical turbulence in the lower atmospheric boundary layer,” Proc. SPIE—Int. Soc. Opt. Eng. 8517, 85170 (2012).Google Scholar
  19. 19.
    D. Sprung, E. Sucher, K. Weiss-Wrana, and K. Stein, “Stability and height dependant variations of the structure function parameters in the lower atmospheric boundary layer investigated from measurements of the long-term experiment VERTURM (Vertical Turbulence Measurements),” Proc. SPIE—Int. Soc. Opt. Eng. 8178, 817809–1 (2011).Google Scholar
  20. 20.
    L. V. Antoshkin, N. N. Botygina, L. A. Bol’basova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P. G. Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Oceanic Opt. 30 (3), 291–299 (2017).CrossRefGoogle Scholar
  21. 21.
    P. G. Kovadlo, P. A. Konyaev, E. A. Kopylov, V. P. Lukin, A. A. Selin, and A. Yu. Shikhovtsev, “Accumulation of measurement data on turbulence in different seasons,” in Proc. of XXIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics”, July 3–7, 2017, Irkutsk (Publishing House of IAO SB RAS, Tomsk, 2017), p. B151–B154 [in Russian].Google Scholar
  22. 22.
    I. A. Razenkov, “Turbulent lidar: I—Desing,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).CrossRefGoogle Scholar
  23. 23.
    I. A. Razenkov, “Turbulent lidar: II—Experiment,” Atmos. Ocean. Opt. 31 (3), 281–289 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. L. Odintsov
    • 1
    Email author
  • V. A. Gladkikh
    • 1
  • A. P. Kamardin
    • 1
  • V. P. Mamyshev
    • 1
  • I. V. Nevzorova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations