Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 582–589 | Cite as

Parameterization of the Infrared Molecular Absorption in the Earth’s Lower and Middle Atmosphere

  • I. V. MingalevEmail author
  • E. A. Fedotova
  • K. G. Orlov
Spectroscopy of Ambient Medium
  • 7 Downloads

Abstract

A new algorithm for parameterizations of molecular absorption in the Earth’s atmosphere is presented, which takes into account the change in atmospheric gas composition with altitude and has a number of other advantages, as well as a parameterization constructed using this algorithm, in the frequency region from 10 to 2000 cm−1 and altitude range from the Earth’s surface to 76 km. Comparison of the calculation results of the Earth’s atmospheric radiation field (carried out using this parameterization) with the results of reference calculations (line-by-line) shows that the parameterization suggested has good accuracy in the lower and middle atmosphere both in the absence and in the presence of cloud layers with a large optical thickness.

Keywords

parameterization of molecular absorption atmospheric radiation calculation of radiation field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka,St. Petersburg, 2003) [in Russian].Google Scholar
  2. 2.
    K. Ya. Kondrat’ev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].Google Scholar
  3. 3.
    Ku-Nan Liou, Foundations of Radiation Processes in the Atmosphere (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  4. 4.
    T. A. Sushkevich, Mathematical Models for Radiation Transfer (BINOM: Laboratoriya znanii, Moscow, 2006) [in Russian].Google Scholar
  5. 5.
    S. D. Tvorogov, “Some aspects of the problem of representation of the absorption function by a series of exponents,” Atmos. Ocean. Opt. 7 (3), 165–171 (1994).Google Scholar
  6. 6.
    L. I. Nesmelova and S. D. Tvorogov, “Some applications of the exponential series for calculating the absorption function,” Atmos. Ocean. Opt. 9 (8), 727–729 (1996).Google Scholar
  7. 7.
    S. D. Tvorogov, L. I. Nesmelova, and O. B. Rodimova, “Representation of the transmission function by the series of exponents,” Atmos. Ocean. Opt. 9 (3), 239–242 (1996).Google Scholar
  8. 8.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Calculation of transmission functions in near infrared region using series of exponents,” Atmos. Ocean. Opt. 10 (12), 923–927 (1997).Google Scholar
  9. 9.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Problem of a more correct frequency integration in calculation of radiation characteristics,” Atmos. Ocean. Opt. 12 (9), 799–801 (1999).Google Scholar
  10. 10.
    S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equation,” Atmos. Ocean. Opt. 12 (9), 730–734 (1999).Google Scholar
  11. 11.
    S.D. Tvorogov, “Construction of exponential series directly from information on the transmission function,” Atmos. Ocean. Opt. 14 (9), 670–673 (2001).Google Scholar
  12. 12.
    S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Ocean. Opt. 21 (11), 797–803 (2008).Google Scholar
  13. 13.
    B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giving the k-distribution with minimum number of terms,” Atmos. Ocean. Opt. 16 (3), 244–246 (2003).Google Scholar
  14. 14.
    B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res. 109, D02110 (2004).Google Scholar
  15. 15.
    B. A. Fomin and P. M. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the short-wave,” J. Geophys. Res. 110, D02106 (2005).Google Scholar
  16. 16.
    E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res., D 102 (14), 682 (1997).Google Scholar
  17. 17.
    R. J. Hogan, “The full-spectrum correlated-k method for longwave atmospheric radiative transfer using an effective Planck function,” J. Atmos. Sci. 67, 2086–2100 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Shil’kov and M. N. Gertsev, “Verification of the Lebesgue averaging method,” Matem. Model. 27 (8), 13–31 (2015).Google Scholar
  19. 19.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C.D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Faytl, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT CKD model of continuum absorption,” Phylos. Trans. R. Soc., A 370 (1968), 2520–2556 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    N. I. Ignat’ev, I. V. Mingalev, A. V. Rodin, and E. A. Fedotova, “A new version of the discrete ordinate method for the calculation of the intrinsic radiation in horizontally homogeneous atmospheres,” Comput. Math. Math. Phys. 55 (10), 1713–1726 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    B. A. Fomin, “Effective interpolation technique for line-by-line calculations of radiation absorption in gases,” J. Quant. Spectrosc. Radiat. Transfer 53, 663–669 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    I. V. Mingalev, E. A. Fedotova, and K. G. Orlov, “Effect of optically thick layers on the heating of the atmosphere by the natural radiation,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (5), 100–108 (2017).Google Scholar
  24. 24.
    R. A. McClatchey, H.-J. Bolle, and K. Ya. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” in World Climate Research Programme. International Association For Meteorology And Atmospheric Physics, Radiation Commission (1986), ser. WCP, vol. 112, No. 24.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Mingalev
    • 1
    Email author
  • E. A. Fedotova
    • 1
  • K. G. Orlov
    • 1
  1. 1.Polar Geophysical InstituteRussian Academy of SciencesApatityRussia

Personalised recommendations