Skip to main content

Coherence of Pseudo-Bessel Beams in a Turbulent Atmosphere

Abstract

Coherent properties of nondiffracting pseudo-Bessel optical beams propagating in a turbulent atmosphere are studied theoretically. The solution of the equation formulated based on the paraxial approximation of the scalar wave equation for the second-order transverse mutual coherence function of the optical radiation field is analyzed. The behavior of the modulus and phase of the complex degree of coherence, coherence radius, and integral scale of the coherence degree of the Bessel-Gaussian optical beam and conical optical wave obtained by cone focusing of the optical beam by an axicon is studied as a function of optical beam parameters and characteristics of a turbulent atmosphere. Significant qualitative and quantitative distinctions between the studied coherence characteristics for cases of a Bessel-Gaussian optical beam and conical optical wave have been revealed. In general, under similar conditions of propagation in a turbulent atmosphere, the coherence of a conical optical wave is higher than that of a Bessel-Gaussian optical beam.

This is a preview of subscription content, access via your institution.

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1968).

    Google Scholar 

  2. P. Morse and H. Fishbakh, Methods of Theoretical Physics (McGraw-Hill Book Company, New York, Toronto, London, 1953).

    Google Scholar 

  3. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1997).

    Google Scholar 

  4. A.P. Kiselev, “Localized light waves: Paraxial and exact solutions of the wave equation (a review),” Opt. Spectrosc. 102 (4), 603–622. 2007

    Google Scholar 

  5. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am., A 4 (4), 651–654 (1987).

    ADS  Article  Google Scholar 

  6. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64 (6), 491–495 (1987).

    ADS  Article  Google Scholar 

  7. J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44 (8), 592–597 (1954).

    ADS  Article  Google Scholar 

  8. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am., A 13 (4), 743–750 (1996).

    ADS  Article  Google Scholar 

  9. D. Ling, J. Li, and J. Chen, “Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method,” J. Opt. Soc. Am., A 23 (4), 912–918 (2006).

    ADS  Article  Google Scholar 

  10. V. P. Koronkevich, A. A. Kharisov, M. T. Geil, and Kh. Shutts, “Multiorder diffraction lenses for formation of Bessel beams,” Avtometriya, No. 5, 38–43 (1996).

    Google Scholar 

  11. T. Aruga, Sh. W. Li, Sh. Yoshikado, M. Takube, and R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation,” Appl. Opt. 38 (15), 3152–3156 (1999).

    ADS  Article  Google Scholar 

  12. P. Birch, I. Ituen, R. Young, and Ch. Chatwin, “Longdistance Bessel beam propagation through Kolmogorov turbulence,” J. Opt. Soc. Am., A 32 (11), 2066–2073 (2015).

    ADS  Article  Google Scholar 

  13. M. Cheng, L. Guo, J. Li, and Q. Huang, “Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence,” J. Opt. Soc. Am., A 33 (8), 1442–1450 (2016).

    ADS  Article  Google Scholar 

  14. Sh. Chen, Sh. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, and J. Wang, “Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation,” Opt. Lett. 41 (20), 4680–4683 (2016).

    ADS  Article  Google Scholar 

  15. Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55 (32), 9211–9216 (2016).

    ADS  Article  Google Scholar 

  16. T. Doster and A. T. Watnik, “Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: Analysis of channel efficiency,” Appl. Opt. 55 (36), 10239–10246 (2016).

    ADS  Article  Google Scholar 

  17. I. P. Lukin, “Bessel-Gaussian beams phase fluctuations in randomly inhomogeneous media,” Atmos. Ocean. Opt. 23 (3), 236–240 (2010).

    Article  Google Scholar 

  18. I. P. Lukin, “Phase fluctuations of optical waves in the case of cone focusing in turbulent atmosphere,” Atmos. Ocean. Opt. 25 (3), 199–203 (2012).

    Article  Google Scholar 

  19. I. P. Lukin, “Coherence of a Bessel beam in a turbulent atmosphere,” Atmos. Ocean. Opt. 25 (5), 328–337 (2012).

    Article  Google Scholar 

  20. I. P. Lukin, “Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere,” Proc. SPIE 9066, 90660Q (2013).

    Google Scholar 

  21. H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Am., A 24 (9), 2891–2901 (2007).

    ADS  Article  Google Scholar 

  22. W. Nelson, J. P. Palastro, C. C. Davis, and P. Sprangle, “Propagation of Bessel and Airy beams through atmospheric turbulence,” J. Opt. Soc. Am., A 31 (3), 603–609 (2014).

    ADS  Article  Google Scholar 

  23. Zh. Jiang, Q. Lu, and Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34 (31), 7183–7185 (1995).

    ADS  Article  Google Scholar 

  24. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  25. M. S. Belen’kii, V. P. Lukin, V. L. Mironov, and V. V. Pokasov, Coherence of Laser Radiation in the Atmosphere (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  26. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  27. M. V. Fedoryuk, Saddle-point Method (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  28. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Informational Service, Springfield, Virginia, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lukin.

Additional information

Original Russian Text © I.P. Lukin, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukin, I.P. Coherence of Pseudo-Bessel Beams in a Turbulent Atmosphere. Atmos Ocean Opt 31, 590–603 (2018). https://doi.org/10.1134/S1024856019010093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019010093

Keywords

  • Bessel beam
  • axicon
  • optical radiation
  • atmospheric turbulence
  • coherence