Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 590–603 | Cite as

Coherence of Pseudo-Bessel Beams in a Turbulent Atmosphere

  • I. P. LukinEmail author
Optics of Stochastically-Heterogeneous Media
  • 9 Downloads

Abstract

Coherent properties of nondiffracting pseudo-Bessel optical beams propagating in a turbulent atmosphere are studied theoretically. The solution of the equation formulated based on the paraxial approximation of the scalar wave equation for the second-order transverse mutual coherence function of the optical radiation field is analyzed. The behavior of the modulus and phase of the complex degree of coherence, coherence radius, and integral scale of the coherence degree of the Bessel-Gaussian optical beam and conical optical wave obtained by cone focusing of the optical beam by an axicon is studied as a function of optical beam parameters and characteristics of a turbulent atmosphere. Significant qualitative and quantitative distinctions between the studied coherence characteristics for cases of a Bessel-Gaussian optical beam and conical optical wave have been revealed. In general, under similar conditions of propagation in a turbulent atmosphere, the coherence of a conical optical wave is higher than that of a Bessel-Gaussian optical beam.

Keywords

Bessel beam axicon optical radiation atmospheric turbulence coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1968).Google Scholar
  2. 2.
    P. Morse and H. Fishbakh, Methods of Theoretical Physics (McGraw-Hill Book Company, New York, Toronto, London, 1953).Google Scholar
  3. 3.
    W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1997).Google Scholar
  4. 4.
    A.P. Kiselev, “Localized light waves: Paraxial and exact solutions of the wave equation (a review),” Opt. Spectrosc. 102 (4), 603–622. 2007Google Scholar
  5. 5.
    J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am., A 4 (4), 651–654 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64 (6), 491–495 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am. 44 (8), 592–597 (1954).ADSCrossRefGoogle Scholar
  8. 8.
    A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am., A 13 (4), 743–750 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    D. Ling, J. Li, and J. Chen, “Analysis of eigenfields in the axicon-based Bessel-Gauss resonator by the transfer-matrix method,” J. Opt. Soc. Am., A 23 (4), 912–918 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    V. P. Koronkevich, A. A. Kharisov, M. T. Geil, and Kh. Shutts, “Multiorder diffraction lenses for formation of Bessel beams,” Avtometriya, No. 5, 38–43 (1996).Google Scholar
  11. 11.
    T. Aruga, Sh. W. Li, Sh. Yoshikado, M. Takube, and R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation,” Appl. Opt. 38 (15), 3152–3156 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    P. Birch, I. Ituen, R. Young, and Ch. Chatwin, “Longdistance Bessel beam propagation through Kolmogorov turbulence,” J. Opt. Soc. Am., A 32 (11), 2066–2073 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    M. Cheng, L. Guo, J. Li, and Q. Huang, “Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence,” J. Opt. Soc. Am., A 33 (8), 1442–1450 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    Sh. Chen, Sh. Li, Y. Zhao, J. Liu, L. Zhu, A. Wang, J. Du, L. Shen, and J. Wang, “Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation,” Opt. Lett. 41 (20), 4680–4683 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, D. Ma, X. Yuan, and Z. Zhou, “Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere,” Appl. Opt. 55 (32), 9211–9216 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    T. Doster and A. T. Watnik, “Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: Analysis of channel efficiency,” Appl. Opt. 55 (36), 10239–10246 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    I. P. Lukin, “Bessel-Gaussian beams phase fluctuations in randomly inhomogeneous media,” Atmos. Ocean. Opt. 23 (3), 236–240 (2010).CrossRefGoogle Scholar
  18. 18.
    I. P. Lukin, “Phase fluctuations of optical waves in the case of cone focusing in turbulent atmosphere,” Atmos. Ocean. Opt. 25 (3), 199–203 (2012).CrossRefGoogle Scholar
  19. 19.
    I. P. Lukin, “Coherence of a Bessel beam in a turbulent atmosphere,” Atmos. Ocean. Opt. 25 (5), 328–337 (2012).CrossRefGoogle Scholar
  20. 20.
    I. P. Lukin, “Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere,” Proc. SPIE 9066, 90660Q (2013).Google Scholar
  21. 21.
    H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Am., A 24 (9), 2891–2901 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    W. Nelson, J. P. Palastro, C. C. Davis, and P. Sprangle, “Propagation of Bessel and Airy beams through atmospheric turbulence,” J. Opt. Soc. Am., A 31 (3), 603–609 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    Zh. Jiang, Q. Lu, and Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34 (31), 7183–7185 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978) [in Russian].zbMATHGoogle Scholar
  25. 25.
    M. S. Belen’kii, V. P. Lukin, V. L. Mironov, and V. V. Pokasov, Coherence of Laser Radiation in the Atmosphere (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  26. 26.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1971) [in Russian].Google Scholar
  27. 27.
    M. V. Fedoryuk, Saddle-point Method (Nauka, Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  28. 28.
    V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Informational Service, Springfield, Virginia, 1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations